洛谷题面

CF1810G


分析

考虑最大前缀和满足两个条件,就是所有前缀和都不超过,以及一定有一个等于。

那么就要保证它能达到最大值且一直不能高于它

设 \(dp[i][j][0/1]\) 表示前 \(i\) 个数离达到最大值还需要 \(j\) 且未/已经达到过最大值。

初始化就是 \(dp[0][j][j==0]=h[j]\),然后转移就是看 \(j\) 减到零的话第三维就为一,就不断加一减一。

对于每个 \(i\) 输出 \(\sum_{j=0}^{n}dp[i][j][1]\),因为末尾不一定要达到最大值,所以可以为任意值,只要达到过即可


代码

#include <cstdio>
#include <cctype>
using namespace std;
const int N=5011,mod=1000000007;
int n,p[N],dp[N][2],f[N][2],ans;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int main(){
for (int T=iut();T;--T){
n=iut();
for (int i=1;i<=n;++i){
int x=iut(),y=iut();
p[i]=1ll*x*ksm(y,mod-2)%mod;
}
for (int i=0;i<=n;++i) dp[i][i==0]=iut();
for (int i=1;i<=n;++i){
ans=0;
for (int j=0;j<=n;++j)
for (int k=0;k<2;++k) f[j][k]=dp[j][k],dp[j][k]=0;
for (int k=0;k<2;++k){
for (int j=0;j<n;++j) Mo(dp[j][k|(j==0)],1ll*f[j+1][k]*p[i]%mod);
for (int j=1;j<=n;++j) Mo(dp[j][k],f[j-1][k]*(mod+1ll-p[i])%mod);
}
for (int j=0;j<=n;++j) Mo(ans,dp[j][1]);
print(ans),putchar(i==n?10:32);
}
for (int j=0;j<=n;++j)
for (int k=0;k<2;++k)
dp[j][k]=f[j][k]=0;
}
return 0;
}

#期望dp#CF1810G The Maximum Prefix的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. 学习go语言编程之安全编程

    数据加密 对称加密 采用单密钥的加密算法,称为对称加密. 常见的单密钥加密算法有DES.AES.RC4等. 在对称加密中,私钥不能暴露,否则在算法公开的情况下,数据等同于明文. 非对称加密 采用双密钥 ...

  2. 细说Spring框架之核心01-概述

    官网:https://spring.io/projects/spring-framework 文档:https://docs.spring.io/spring-framework/docs/curre ...

  3. 具备有效期的sessionStorage存储

    具备有效期的sessionStorage存储 类方式 // 具备有效期的sessionStorage存储-类方式. class SessionStorageWrapper { // 存储数据到sess ...

  4. FFmpeg开发笔记(十一):ffmpeg在移植到海思HI35xx平台之将ffmpeg库引入到sample的demo中

    前言   上一篇交叉编译了ffmpeg的海思版本,使用交叉编译的qt的ffmpeg播放器在海思上播放,本片是将ffmpeg的环境添加进海思的sample环境中.   在海思sample中引入ffmpe ...

  5. values_list()中参数flat用法

    先说下values from .models import Student student = Student.objects.values('number') student [{'number': ...

  6. HTML学习---day01

    1.head标签 <!DOCTYPE html> <!--文档声明H5 html--> <html lang="en"> <head> ...

  7. For 循环跟yield区别?

    for循环遍历一个万亿级别的长列表,会将这个列表的全部数据载入到内存中去,如果你的内存很小就会溢出,即使是内存很大,这个操作也是十分占用资源的. 而使用生成器,则会将数据的状态(例如:遍历到列表的哪个 ...

  8. Java //9*9乘法表 乘法口诀

    1 //9*9乘法表 2 3 for(int i =1;i<10;i++) 4 { 5 for(int j = 1;j <=i;j++) 6 { 7 System.out.print(i+ ...

  9. Codeforces Round 770 (Div. 2)(数学异或奇偶性)

    B. Fortune Telling 拿到题目看数据范围之后就知道暴力显然是来不及的. 那么只能找性质. \(考虑x和x+3的不同 \quad 奇偶性不同\) \(然后考虑两种操作对于一个数的奇偶性的 ...

  10. input textarea 禁止输入 非数字,特别是中文字符,光标位置保持不变 - vue2

    input textarea 禁止输入 非数字,特别是中文字符,光标位置保持不变 思路:禁止输入 主要是用 keydown事件限制 不让输入即可,主要是输入中文的时候,之前没弄过. 禁止中文输入思路 ...