随着模型规模的增长,生成式人工智能的实现需要大量的推理资源。这不仅增加了每次生成的成本,而且还增加了用于满足此类请求的功耗。因此,文本生成的推理优化对于降低延迟、基础设施成本以及功耗都至关重要,其可以改善用户体验并提高文本生成任务的效率。

辅助解码是一种用于加速文本生成的流行方法。我们在英特尔 Gaudi2 上对其进行了适配和优化,使得其性能与英伟达 H100 GPU 相当,一如我们在 之前的博文 中所展示的,但 Gaudi2 的价格仅相当于英伟达 A100 80GB GPU。这项工作现已集成入 Optimum Habana,Optimum Habana 对 Transformers 和 Diffusers 等各种 Hugging Face 库进行了扩展,以在英特尔 Gaudi 处理器上对用户的工作流进行全面优化。

投机采样 - 辅助解码

投机采样是一种用于加速文本生成的技术。其工作原理是用一个草稿模型一次生成 K 个词元,再由目标模型对这 K 个生成词元进行评估。如若草稿模型生成的某个位置的词元被拒绝,则用目标模型来生成该位置的词元,并丢弃草稿模型生成的随后词元,反复执行上述过程直至结束。使用投机采样,可以提高文本生成的速度并得到与原始自回归采样相当的生成质量。使用该技术时,用户可以指定草稿模型。数据证明,推测采样可为基于 transformer 的大模型带来约 2 倍的加速。一句话概括,投机采样可以加速文本生成并提高英特尔 Gaudi 处理器上的文本生成性能。

然而,草稿模型和目标模型 KV 缓存尺寸不同,因此同时分别对这两个模型进行优化显得尤为重要。本文,我们假设目标模型为一个量化模型,并利用 KV 缓存和投机采样对其进行加速。请注意,这里每个模型都有自己的 KV 缓存。我们用草稿模型生成 K 个词元,然后用目标模型对其进行评估; 当草稿模型生成的词元被拒绝时,目标模型会用于生成被拒绝位置的词元,并丢弃草稿模型生成的随后词元; 接着草稿模型继续生成接下来的 K 个词元,如此往复。

请注意,文献 [2] 证明了执行投机采样可以恢复目标模型的分布 - 这从理论上保证了投机采样可以达到与对目标模型自身进行自回归采样相同的采样质量。因此,不采用投机采样的理由仅在于收益,如草稿模型的尺寸并没有足够的比较优势,抑或是草稿模型生成词元的接受比太低。

辅助生成是一种类似于投机采样的技术,其大约与投机采样同一时间被独立发明出来 [3]。其作者将此方法集成到了 Hugging Face Transformers 中,现在模型的 .generate() 的方法中有一个可选的 assistant_model 参数用于启用辅助生成。

用法及实验

在 Gaudi 上使用辅助生成非常简单,我们在 这里 提供了一个示例。

顾名思义,参数 --assistant_model 用于指定草稿模型。草稿模型用于生成 K 个词元,然后由目标模型对其进行评估。当草稿模型生成的词元被拒绝时,目标模型会自己生成该位置的词元,并将草稿模型生成的该位置之后的词元丢弃。接着,草稿模型再生成接下来的 K 个词元,如此往复。草稿模型的接受率部分取决于模型选择,部分取决于输入文本。一般情况下,辅助生成能将大型 transformer 族模型的速度提高约 2 倍。

总结

Gaudi 现已支持用户简单易用地使用辅助生成加速文本生成,用户可用其进一步提高英特尔 Gaudi 处理器的性能。该方法基于投机采样,已被证明可以有效提高基于大型 transformer 模型的性能。

参考文献

[1] N. Shazeer,Fast Transformer Decoding: One Write-Head is All You Need,Nov. 2019,arXiv:1911.02150.

[2] C. Chen,S. Borgeaud,G. Irving,J.B. Lespiau,L. Sifre,J. Jumper, Accelerating Large Language Model Decoding with Speculative Sampling,Feb. 2023,arXiv:2302.01318

[3] J. Gante,辅助生成: 低延迟文本生成的新方向,May 2023,https://hf.co/blog/zh/assisted-generation


英文原文: https://hf.co/blog/assisted-generation-support-gaudi

原文作者: Haim Barad,Tien Pei Chou

译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。

英特尔 Gaudi 加速辅助生成的更多相关文章

  1. 英特尔® 硬件加速执行管理器安装指南 — Microsoft Windows*

    介绍 本文将指导您安装英特尔® 硬件加速执行管理器(英特尔® HAXM),这是一款可以使用英特尔® 虚拟化技术(VT)加快 Android* 开发速度的硬件辅助虚拟化引擎(管理程序). 前提条件 英特 ...

  2. 英特尔® 至强® 平台集成 AI 加速构建数据中心智慧网络

    英特尔 至强 平台集成 AI 加速构建数据中心智慧网络 SNA 通过 AI 方法来实时感知网络状态,基于网络数据分析来实现自动化部署和风险预测,从而让企业网络能更智能.更高效地为最终用户业务提供支撑. ...

  3. 基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训

    原文链接 深度神经网络 (DNN) 培训属于计算密集型项目,需要在现代计算平台上花费数日或数周的时间方可完成. 在最近的一篇文章<基于英特尔® 至强™ E5 产品家族的单节点 Caffe 评分和 ...

  4. 基于英特尔® 至强 E5 系列处理器的单节点 Caffe 评分和训练

    原文链接 在互联网搜索引擎和医疗成像等诸多领域,深度神经网络 (DNN) 应用的重要性正在不断提升. Pradeep Dubey 在其博文中概述了英特尔® 架构机器学习愿景. 英特尔正在实现 Prad ...

  5. 英特尔® 图形性能分析器(Intel® GPA)

    英特尔图形性能分析器概述 英特尔 GPA 是一套软件工具,它能提供平台级游戏性能分析功能,优化应用性能. 英特尔 GPA 包含以下组件: 英特尔 GPA 监控器 - 将英特尔 GPA 连接至应用(处于 ...

  6. 在英特尔 CPU 上加速 Stable Diffusion 推理

    前一段时间,我们向大家介绍了最新一代的 英特尔至强 CPU (代号 Sapphire Rapids),包括其用于加速深度学习的新硬件特性,以及如何使用它们来加速自然语言 transformer 模型的 ...

  7. 英特尔与 Facebook 合作采用第三代英特尔® 至强® 可扩展处理器和支持 BFloat16 加速的英特尔® 深度学习加速技术,提高 PyTorch 性能

    英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了 ...

  8. 使用英特尔 Sapphire Rapids 加速 PyTorch Transformers 模型

    大约一年以前,我们 展示 了如何在第三代 英特尔至强可扩展 CPU (即 Ice Lake) 集群上分布式训练 Hugging Face transformers 模型.最近,英特尔发布了代号为 Sa ...

  9. 英特尔15天开发IDF硬享公社App全过程

    4月8日英特尔智能硬件大赛在上海决赛,4月13日英热尔智能硬件大赛10强在深圳首秀.英特尔辗转两大城市来顾全两地智能硬件创业者,移动直播就成了用户们最重要的观看渠道. 这次英特尔两大会事现场直播都在官 ...

  10. 跨代的对决 英特尔i7-6700HQ对比i7-4720HQ性能测试

    http://itianti.sinaapp.com/index.php/cpu 跨代的对决 英特尔i7-6700HQ对比i7-4720HQ性能测试 2015-10-13 19:46:31 来源:电脑 ...

随机推荐

  1. 6个实例带你解读TinyVue 组件库跨框架技术

    本文分享自华为云社区<6个实例带你解读TinyVue 组件库跨框架技术>,作者: 华为云社区精选. 在DTSE Tech Talk <手把手教你实现mini版TinyVue组件库&g ...

  2. LSP(Language Server Protocol)简介

    概述 Language Server Protocol(LSP)是微软2016年提出的一项通讯协议方案.该方案定义了一套协议,用于在IDE或编辑器和提供代码补全.转到定义等功能的Language Se ...

  3. Java设计模式-策略模式-基于Spring实现

    1.策略模式 1.1.概述 策略模式是一种行为设计模式,它允许在运行时选择算法的行为.它将算法封装在独立的策略类中,使得它们可以相互替换,而不影响客户端代码.这种模式通过将算法的选择从客户端代码中分离 ...

  4. Gin框架

    目录 gin的参数获取 header参数 post Raw json 请求示例 gin的参数获取 package main import ( "fmt" "github. ...

  5. OpenVoiceV2本地部署教程,苹果MacOs部署流程,声音响度统一,文字转语音,TTS

    最近OpenVoice项目更新了V2版本,新的模型对于中文推理更加友好,音色也得到了一定的提升,本次分享一下如何在苹果的MacOs系统中本地部署OpenVoice的V2版本. 首先下载OpenVoic ...

  6. ts小知识

    在引入enum枚举的时候不需要加type import type {a} from 'b'

  7. python命令行传参详解,optparse模块OptionParse类的学习

    官网链接:https://docs.python.org/3/library/optparse.html https://docs.python.org/2/library/argparse.html ...

  8. 腾讯面试:如何提升Kafka吞吐量?

    Kafka 是一个分布式流处理平台和消息系统,用于构建实时数据管道和流应用.它最初由 LinkedIn 开发,后来成为 Apache 软件基金会的顶级项目. Kafka 特点是高吞吐量.分布式架构.支 ...

  9. vue-cli 中使用 Axios

    安装 axios: 1 npm install axios --save-dev 接着在src目录下创建一个http.js脚本中,导入axios并通过create方法实例化一个http请求对象,这样我 ...

  10. 腾讯redis2.3集群搭建

    环境规划: IP 主机名 组件 配置 备注 192.168.3.81 node1 8核16G 磁盘X2-50G 没有8核16G无法添加服务器 192.168.3.82 node2 cache,prox ...