C#二叉搜索树算法
二叉搜索树算法实现原理
二叉搜索树(Binary Search Tree,简称BST)是一种节点有序排列的二叉树数据结构。它具有以下性质:
- 每个节点最多有两个子节点。
- 对于每个节点,其左子树的所有节点值都小于该节点值,其右子树的所有节点值都大于该节点值。
实现基本步骤和代码示例
步骤
- 定义节点类:包含节点值、左子节点和右子节点。
- 插入节点:递归或迭代地将新值插入到树中合适的位置。
- 搜索节点:根据节点值在树中查找特定值。
- 删除节点:从树中删除特定值的节点,并维护树的结构。
- 遍历树:包括前序遍历、中序遍历、后序遍历和层次遍历等。
完整代码示例
namespace HelloDotNetGuide.常见算法
{
public class 二叉搜索树算法
{
public static void BinarySearchTreeRun()
{
var bst = new BinarySearchTree();
// 插入一些值到树中
bst.Insert(50);
bst.Insert(30);
bst.Insert(20);
bst.Insert(40);
bst.Insert(70);
bst.Insert(60);
bst.Insert(80);
bst.Insert(750);
Console.WriteLine("中序遍历(打印有序数组):");
bst.InorderTraversal();
Console.WriteLine("\n");
// 查找某些值
Console.WriteLine("Search for 40: " + bst.Search(40)); // 输出: True
Console.WriteLine("Search for 25: " + bst.Search(25)); // 输出: False
Console.WriteLine("\n");
// 删除某个值
bst.Delete(50);
Console.WriteLine("删除50后:");
bst.InorderTraversal();
}
}
/// <summary>
/// 定义二叉搜索树的节点结构
/// </summary>
public class TreeNode
{
public int Value;
public TreeNode Left;
public TreeNode Right;
public TreeNode(int value)
{
Value = value;
Left = null;
Right = null;
}
}
/// <summary>
/// 定义二叉搜索树类
/// </summary>
public class BinarySearchTree
{
private TreeNode root;
public BinarySearchTree()
{
root = null;
}
#region 插入节点
/// <summary>
/// 插入新值到二叉搜索树中
/// </summary>
/// <param name="value">value</param>
public void Insert(int value)
{
if (root == null)
{
root = new TreeNode(value);
}
else
{
InsertRec(root, value);
}
}
private void InsertRec(TreeNode node, int value)
{
if (value < node.Value)
{
if (node.Left == null)
{
node.Left = new TreeNode(value);
}
else
{
InsertRec(node.Left, value);
}
}
else if (value > node.Value)
{
if (node.Right == null)
{
node.Right = new TreeNode(value);
}
else
{
InsertRec(node.Right, value);
}
}
else
{
//值已经存在于树中,不再插入
return;
}
}
#endregion
#region 查找节点
/// <summary>
/// 查找某个值是否存在于二叉搜索树中
/// </summary>
/// <param name="value">value</param>
/// <returns></returns>
public bool Search(int value)
{
return SearchRec(root, value);
}
private bool SearchRec(TreeNode node, int value)
{
// 如果当前节点为空,表示未找到目标值
if (node == null)
{
return false;
}
// 如果找到目标值,返回true
if (node.Value == value)
{
return true;
}
// 递归查找左子树或右子树
if (value < node.Value)
{
return SearchRec(node.Left, value);
}
else
{
return SearchRec(node.Right, value);
}
}
#endregion
#region 中序遍历
/// <summary>
/// 中序遍历(打印有序数组)
/// </summary>
public void InorderTraversal()
{
InorderTraversalRec(root);
}
private void InorderTraversalRec(TreeNode root)
{
if (root != null)
{
InorderTraversalRec(root.Left);
Console.WriteLine(root.Value);
InorderTraversalRec(root.Right);
}
}
#endregion
#region 删除节点
/// <summary>
/// 删除某个值
/// </summary>
/// <param name="val">val</param>
public void Delete(int val)
{
root = DeleteNode(root, val);
}
private TreeNode DeleteNode(TreeNode node, int val)
{
if (node == null)
{
return null;
}
if (val < node.Value)
{
node.Left = DeleteNode(node.Left, val);
}
else if (val > node.Value)
{
node.Right = DeleteNode(node.Right, val);
}
else
{
// 节点有两个子节点
if (node.Left != null && node.Right != null)
{
// 使用右子树中的最小节点替换当前节点
TreeNode minNode = FindMin(node.Right);
node.Value = minNode.Value;
node.Right = DeleteNode(node.Right, minNode.Value);
}
// 节点有一个子节点或没有子节点
else
{
TreeNode? temp = node.Left != null ? node.Left : node.Right;
node = temp;
}
}
return node;
}
/// <summary>
/// 找到树中的最小节点
/// </summary>
/// <param name="node"></param>
/// <returns></returns>
private TreeNode FindMin(TreeNode node)
{
while (node.Left != null)
{
node = node.Left;
}
return node;
}
#endregion
}
}
输出结果:
数组与搜索树的效率对比
二叉搜索树的各项操作的时间复杂度都是对数阶,具有稳定且高效的性能。只有在高频添加、低频查找删除数据的场景下,数组比二叉搜索树的效率更高。
二叉搜索树常见应用
- 用作系统中的多级索引,实现高效的查找、插入、删除操作。
- 作为某些搜索算法的底层数据结构。
- 用于存储数据流,以保持其有序状态。
C#数据结构与算法实战入门指南
参考文章
- https://www.hello-algo.com/chapter_tree/binary_search_tree
- https://www.hello-algo.com/chapter_tree/binary_tree_traversal
C#二叉搜索树算法的更多相关文章
- 【转载】图解:二叉搜索树算法(BST)
原文:图解:二叉搜索树算法(BST) 摘要: 原创出处:www.bysocket.com 泥瓦匠BYSocket 希望转载,保留摘要,谢谢!“岁月极美,在于它必然的流逝”“春花 秋月 夏日 冬雪”— ...
- 二叉搜索树算法详解与Java实现
二叉查找树可以递归地定义如下,二叉查找树或者是空二叉树,或者是满足下列性质的二叉树: (1)若它的左子树不为空,则其左子树上任意结点的关键字的值都小于根结点关键字的值. (2)若它的右子树不为空,则其 ...
- [LeetCode] Delete Node in a BST 删除二叉搜索树中的节点
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Retur ...
- [Swift]LeetCode450. 删除二叉搜索树中的节点 | Delete Node in a BST
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Retur ...
- [Swift]LeetCode701. 二叉搜索树中的插入操作 | Insert into a Binary Search Tree
Given the root node of a binary search tree (BST) and a value to be inserted into the tree, insert t ...
- [LeetCode] Insert into a Binary Search Tree 二叉搜索树中插入结点
Given the root node of a binary search tree (BST) and a value to be inserted into the tree, insert t ...
- 230. 二叉搜索树中第K小的元素
230. 二叉搜索树中第K小的元素 题意 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数. ...
- leetcode 二叉搜索树中第K小的元素 python
二叉搜索树中第K小的元素 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元 ...
- LeetCode:二叉搜索树中第K小的数【230】
LeetCode:二叉搜索树中第K小的数[230] 题目描述 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ...
- LeetCode:二叉搜索树中的搜索【700】
LeetCode:二叉搜索树中的搜索[700] 题目描述 给定二叉搜索树(BST)的根节点和一个值. 你需要在BST中找到节点值等于给定值的节点. 返回以该节点为根的子树. 如果节点不存在,则返回 N ...
随机推荐
- Java开发者的神经网络进阶指南:深入探讨交叉熵损失函数
前言 今天来讲一下损失函数--交叉熵函数,什么是损失函数呢?大体就是真实与预测之间的差异,这个交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异 ...
- 免费且离线的同声翻译利器「GitHub 热点速览」
开源的翻译软件众多,但大多数依赖于翻译 API 服务,因此就需要联网.有次数限制.并非完全免费.然后,本周上榜的是一款可以离线使用的 Android 翻译软件:RTranslator,它创建于 4 年 ...
- 使用iperf3调试网络
介绍 Iperf是一款基于TCP/IP和UDP/IP的网络性能测试工具,它可以用来测量网络带宽和网络质量,还可以提供网络延迟抖动.数据包丢失率.最大传输单元等统计信息.网络管理员可以根据这些信息了解并 ...
- 从Java开发者到.NET Core初级工程师学习路线:C#语言基础
1. C#语言基础 1.1 C#语法概览 欢迎来到C#的世界!对于刚从Java转过来的开发者来说,你会发现C#和Java有很多相似之处,但C#也有其独特的魅力和强大之处.让我们一起来探索C#的基本语法 ...
- SpringBoot实战:轻松实现接口数据脱敏
引言 在现代的互联网应用中,数据安全和隐私保护变得越来越重要.尤其是在接口返回数据时,如何有效地对敏感数据进行脱敏处理,是每个开发者都需要关注的问题.本文将通过一个简单的Spring Boot项目,介 ...
- Python win11 安装lxml 失败
如果你有一个项目执行了requirements后,一直提示lxml失败,解决步骤如下 1.尝试升级pip python.exe -m pip install --upgrade pip 2.尝试下载包 ...
- 构建基于Java Spring Boot和Uniapp的心理小程序:从零到一的完整指南
构建基于Java Spring Boot和Uniapp的心理小程序:从零到一的完整指南 前言 大家好,今天我们来聊聊如何使用Java Spring Boot和Uniapp构建一个心理小程序.这个项目不 ...
- holiday week2
本周进度总结: 本周完成了小学期内容 LOL打了近20把,rank几乎不变 平均每天用6h+在编程学习上,更进一步了解了C++,我相信我有更进一步的编程水平,可以编写更多的东西 JAVA还没开始学 别 ...
- ambari+ bigtop 编译、打包、部署步骤总览
1 ambari + bigtop 构建大数据基础平台 1.1 参考: 1.2 参考 amabri bigtop 打包部署 2 ambari+bigtop编译.打包.部署 2.0 基础环境准备 2.1 ...
- Jmeter函数助手35-property
property函数用于获取jmeter属性值. 属性名称:填入jmeter的属性名称 存储结果的变量名(可选) 默认值:缺省值,当获取属性值为空时则返回该值 1.查看jmeter全局属性,测试计划右 ...