Luogu2303 [SDOi2012]Longge的问题

题目

题目背景

SDOi2012

题目描述

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出

\[\sum_{i=1}^{n}GCD(i,n)
\]

输入输出格式

输入格式:

一个整数,为N。

输出格式:

一个整数,为所求的答案。

输入输出样例

输入样例#1: 复制

6

输出样例#1: 复制

15

说明

对于60%的数据,\(0<N<=2^{16}\)

对于100%的数据,\(0<N<=2^{32}\)

题解

显然直接枚举会超时.

但有60分可得.

考虑换个枚举点.

可能成为GCD(i,n)的数就是n的因子.

\(\sqrt n\)的枚举n的因子.

然后求

\(\sum_x\sum_{i=1}^nGCD(i,n)== x\)

前半部枚举,考虑如何处理后半部分.

\[\sum_{i=1}^{n} GCD(i,n)==x
\]

\[\sum_{i=1}^{n/x} GCD(i,n/x) == 1
\]

看出这就是求\(\phi {x}\)

然后直接求就好.

时间复杂度:\(O(因子个数*\sqrt n)\)

CODE:

// luogu-judger-enable-o2
#include <iostream>
#include <cstdio>
#include <cmath>
#define ll long long ll phi(ll x)
{
ll ans = x,qwq = sqrt(x);
for(ll i = 2;i <= qwq;++i)
if(x % i == 0)
{
ans = ans - ans / i;
while(x % i == 0) x /= i;
}
if(x > 1) ans = ans - ans / x;
return ans;
} int main() {
ll n;
scanf("%lld",&n);
ll m = sqrt(n);
ll ans = 0;
for(int i = 1;i <= m;++ i) {
if(n % i == 0) ans += i * phi(n / i) + n / i * phi(i);
}
if(m * m == n) ans -= m * phi(m);
printf("%lld",ans);
}

[SDOi2012]Longge的问题 (数论)的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

  2. 洛谷P2303 [SDOi2012] Longge的问题 数论

    看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...

  3. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  4. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  5. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  6. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  7. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  8. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  9. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

随机推荐

  1. [題解]BZOJ_1260_塗色

    簡單的區間dp,結果竟然寫掛了......還掛的很徹底......狗屎 如果區間左右端點相等,那麼不需要在多花一次去刷,對 f [ i+1 ] [ j ],f [ i ] [ j-1 ]取個min, ...

  2. 洛谷 P2231 [HNOI2002]跳蚤

    https://www.luogu.org/problemnew/show/P2231 题意相当于:有n个位置a[1..n],每个位置可以填[1,m]中任一个整数,问共有多少种填法满足gcd(a[1] ...

  3. 20 P2678 跳石头

    题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N 块岩石(不 ...

  4. LVDT

    什么是 LVDT? LVDT 是线性可变差动变压器的缩写. 它是一种常见类型的机电传感器,可将其以机械方式耦合的物体的直线运动转换为对应的电气信号.LVDT 线性位移传感器随时可用,可以测量各种移动, ...

  5. Sql 行转换为列 以及列转换为行的心得

    这是 创建数据库的脚本文件 CREATE TABLE [dbo].[stu]( [学号] [nvarchar](255) NOT NULL, [姓名] [nvarchar](255) NULL, [性 ...

  6. Jenkins怎么启动和停止服务

    笔者没有把Jenkins配置到tomcat中,每次都是用命令行来启动Jenkins.但是遇到一个问题:Jenkins一直是开着的,想关闭也关闭不了.百度了一些资料,均不靠谱(必须吐槽一下百度).于是进 ...

  7. 使用 Azure 创建存储和检索文件

    本指南将以循序渐进的方式帮助您使用 Azure 将文件存储到云中.我们将逐一介绍如何创建存储账户.创建容器.上传文件.检索文件和删除文件.在本教程中完成的所有操作均符合 1 元试用条件. 本指南将以循 ...

  8. LR中排序脚本

    /* * LoadRunner Java script. (Build: 670) * * Script Description: * */ import lrapi.lr; public class ...

  9. Exoplanet: The hunt is on

    原文 How many planets are out there? Today scientists believe that planets could outnumber the stars.F ...

  10. kettle数据同步方法

    1.实时性要求不高,采用全删全插的方式(适合于维度表.大数据量表) 2.有时间维度,直接从事实表同步的数据,可以采用根据时间字段进行筛选,增量同步.这个网上有很多例子,就不重复写了. 3.没有时间维度 ...