传送门

2144 砝码称重 2

 时间限制: 1 s
 空间限制: 16000 KB
 题目等级 : 钻石 Diamond
 
题目描述 Description

有n个砝码,现在要称一个质量为m的物体,请问最少需要挑出几个砝码来称?

注意一个砝码最多只能挑一次

输入描述 Input Description

第一行两个整数n和m,接下来n行每行一个整数表示每个砝码的重量。

输出描述 Output Description

输出选择的砝码的总数k,你的程序必须使得k尽量的小。

样例输入 Sample Input

3 10
5
9
1

样例输出 Sample Output

数据范围及提示 Data Size & Hint

1<=n<=30,1<=m<=2^31,1<=每个砝码的质量<=2^30

【思路】
正解:搜索
神正解:双向搜索
吐槽:你都知道质量是m了你称个鬼啊╭(╯^╰)╮
【code】
我的智障搜索
#include<iostream>
#include<cstdio>
using namespace std;
int w[],use[];
long long ans,m;
int n,res=;
void dfs(int x)
{
if(ans>=res){
return;
}
if(!m)
{
if(ans<res)
res=ans;
return ;
}
for(int i=;i<=n;i++)
{
if(!use[i]&&w[i]<=m)
{
use[i]=;
m-=w[i];
ans++;
dfs(x+);
m+=w[i];
use[i]=;
ans--;
}
}
return;
}
int main()
{
scanf("%d%lld",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&w[i]);
dfs();
printf("%d\n",res);
return ;
}

比较尴尬.....

用后缀和优化 剪枝

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
long long w[],last[];
int n,m;
int ans;
inline int read()
{
int f=,x=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
inline bool cmp(int a,int b)
{
return a>b;
}
inline void dfs(int now,int use,long long ww)
{
if(use>=ans)return;
if(ww==m){ans=min(ans,use);}
for(int i=now+;i<=n;i++)
{
if(ww+last[i]<m)return;
if(ww+w[i]>m)continue;
dfs(i,use+,ww+w[i]);
}
return;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
w[i]=read();
sort(w+,w+n+,cmp);
for(int i=n;i>=;i--)
last[i]=last[i+]+w[i];
ans=n;
dfs(,,);
printf("%d\n",ans);
return ;
}

发现加上inline也没多大用。(前后对比)

比较神的双向搜索,其实我做这个题就是为了学这个方法。

就是把原来的数分成两部分进行dfs。

并用map<int,int>这些质量需要多少砝码。

mm-sum能在第一次dfs中能找到。(sum表示第二次dfs中目前总质量)

js+m[mm-sum];来更新最优解。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<map>
using namespace std;
int ans(),w[],n;
long long mm;
map<int, int>m;
void dfs(int js,int last,int sum,bool k)
{
int r=n;
if(k){m[sum]=js;r/=;}
else
{
if(m.find(mm - sum)!=m.end())
ans=min(ans,js+m[mm-sum]);
}
for(int i=last;i<r;i++)
dfs(js+,i+,sum+w[i],k);
}
int main()
{
scanf("%d%lld",&n,&mm);
for(int i=;i<n;i++)
scanf("%d",&w[i]);
dfs(,,,true);
dfs(,n/,,false);
printf("%d\n",ans);
return ;
}

codevs 2144 砝码称重2的更多相关文章

  1. Codevs 2144 砝码称重 2

    2144 砝码称重 2  时间限制: 1 s  空间限制: 16000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 有n个砝码,现在要称一个质量为m ...

  2. Codevs No.2144 砝码称重2

    2016-05-31 22:01:16 题目链接: 砝码称重2 (Codevs No.2144) 题目大意: 给定N个砝码,求称出M的重量所需砝码最小个数 解法: 贪心 使砝码数量最小,当然是每个砝码 ...

  3. NOI题库--砝码称重V2(多重背包2^n拆分)

    以前只会写多重背包的原版,渣的不行,为了做此题不得不学习了一下,发现其实也不难,只要理解了方法就好多了(PS:其实和倍增挺像的) 8756:砝码称重V2 总时间限制: 1000ms 内存限制: 655 ...

  4. 安徽省2016“京胜杯”程序设计大赛_A_砝码称重

    砝码称重 Time Limit: 1000 MS Memory Limit: 65536 KB Total Submissions: 61 Accepted: 37 Description 小明非常喜 ...

  5. P2347 砝码称重-DP方案数-bitset

    P2347 砝码称重 DP做法 : 转化为 01背包. 进行方案数 更新.最后统计种类. #include<bits/stdc++.h> using namespace std; #def ...

  6. 51nod 1449 砝码称重 (进制思想)

    1449 砝码称重 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 现在有好多种砝码,他们的重量是 w0,w1,w ...

  7. 51nod 1837 砝码称重【数学,规律】

    题目链接:51nod 1837 砝码称重 小 Q 有 n 个砝码,它们的质量分别为 1 克. 2 克.……. n 克. 他给 i 克的砝码标上了编号 i (i = 1, 2, ..., n),但是编号 ...

  8. P2347 砝码称重

    P2347 砝码称重 题目描述 设有1g.2g.3g.5g.10g.20g的砝码各若干枚(其总重<=1000), 输入输出格式 输入格式: 输入方式:a1 a2 a3 a4 a5 a6 (表示1 ...

  9. 洛谷P1441 砝码称重

    P1441 砝码称重 题目描述 现有n个砝码,重量分别为a1,a2,a3,……,an,在去掉m个砝码后,问最多能称量出多少不同的重量(不包括0). 输入输出格式 输入格式: 输入文件weight.in ...

随机推荐

  1. hibernate批量更新和删除数据

    批量处理  不建议用Hibernate,它的insert效率实在不搞,不过最新版本的Hibernate似乎已经在批量处理的时候做过优化了,设置一些参数如batch_size,不过性能我没有测试过,听说 ...

  2. 开发ActiveX控件调用另一个ActiveX系列0——身份证识别仪驱动的问题

    程序员要从0下表开始,这篇是介绍这个系列的背景的,没有兴趣的人可以直接跳过. 为什么要开发ActiveX控件 由于工作需要,我们开发了一个网站,使用了一款身份证识别仪的网页ActiveX(OCX)插件 ...

  3. java中的双重锁定检查(Double Check Lock)

    原文:http://www.infoq.com/cn/articles/double-checked-locking-with-delay-initialization#theCommentsSect ...

  4. 解决php网页运行超时问题:Maximum execution time of 30 seconds exceeded

    Fatal error: Maximum execution time of 30 seconds exceeded in C:\Inetpub\wwwroot\ry.php on line 11 意 ...

  5. ArrayList中contains,remove方法返回为false的原因

    这几天做一个项目时,遇到ArrayList.remove(Object)方法失败,而ArrayList"包含"删除的对象,这其中的"包含"不是完全包含,请看下面 ...

  6. MySQL 5.7.18的安装及主从复制(主从同步)

    MySQL 5.7.18的安装与主从复制 IP 计算机名 角色 192.168.1.222 001 master 192.168.1.233 002 slave CentOS 6.9安装mysql5. ...

  7. XMPP资源绑定(Resource Binding)

    一个XMPP的账号由三部分组成: 用户名(user/node),域名(domain)和资源(resource) .例如 alice@xmpp.irusher.com/mobile ,user部分(或n ...

  8. Linq的优缺点

    优点: 1.Linq提供了不同数据源的抽象层,所以可以使用相同的语法访问不同的数据源(只要该数据源有提供程序即可) 2.Linq为底层的数据存储提供了一个强类型化的界面,可以把底层的数据作为对象来访问 ...

  9. CrystalReport runtime的下载地址

    SAP网站的东西实在太多了,找个CrytalReport都费劲.13.*版的可以通过下面的地址下载: SAP Crystal Reports, developer version for Micros ...

  10. 一起来学linux:例行性任务之at和crontab

    对于我们日常生活来说,有很多例行需要进行的工作,比如每天早上起床一杯水,例如家人的生日,每天的起床时间等.这性例行的工作有可能被遗忘,但是如果我们用计算机来进行提醒的话,则方便很多.这里就要介绍到Li ...