传送门

2144 砝码称重 2

 时间限制: 1 s
 空间限制: 16000 KB
 题目等级 : 钻石 Diamond
 
题目描述 Description

有n个砝码,现在要称一个质量为m的物体,请问最少需要挑出几个砝码来称?

注意一个砝码最多只能挑一次

输入描述 Input Description

第一行两个整数n和m,接下来n行每行一个整数表示每个砝码的重量。

输出描述 Output Description

输出选择的砝码的总数k,你的程序必须使得k尽量的小。

样例输入 Sample Input

3 10
5
9
1

样例输出 Sample Output

数据范围及提示 Data Size & Hint

1<=n<=30,1<=m<=2^31,1<=每个砝码的质量<=2^30

【思路】
正解:搜索
神正解:双向搜索
吐槽:你都知道质量是m了你称个鬼啊╭(╯^╰)╮
【code】
我的智障搜索
#include<iostream>
#include<cstdio>
using namespace std;
int w[],use[];
long long ans,m;
int n,res=;
void dfs(int x)
{
if(ans>=res){
return;
}
if(!m)
{
if(ans<res)
res=ans;
return ;
}
for(int i=;i<=n;i++)
{
if(!use[i]&&w[i]<=m)
{
use[i]=;
m-=w[i];
ans++;
dfs(x+);
m+=w[i];
use[i]=;
ans--;
}
}
return;
}
int main()
{
scanf("%d%lld",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&w[i]);
dfs();
printf("%d\n",res);
return ;
}

比较尴尬.....

用后缀和优化 剪枝

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
long long w[],last[];
int n,m;
int ans;
inline int read()
{
int f=,x=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
inline bool cmp(int a,int b)
{
return a>b;
}
inline void dfs(int now,int use,long long ww)
{
if(use>=ans)return;
if(ww==m){ans=min(ans,use);}
for(int i=now+;i<=n;i++)
{
if(ww+last[i]<m)return;
if(ww+w[i]>m)continue;
dfs(i,use+,ww+w[i]);
}
return;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
w[i]=read();
sort(w+,w+n+,cmp);
for(int i=n;i>=;i--)
last[i]=last[i+]+w[i];
ans=n;
dfs(,,);
printf("%d\n",ans);
return ;
}

发现加上inline也没多大用。(前后对比)

比较神的双向搜索,其实我做这个题就是为了学这个方法。

就是把原来的数分成两部分进行dfs。

并用map<int,int>这些质量需要多少砝码。

mm-sum能在第一次dfs中能找到。(sum表示第二次dfs中目前总质量)

js+m[mm-sum];来更新最优解。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<map>
using namespace std;
int ans(),w[],n;
long long mm;
map<int, int>m;
void dfs(int js,int last,int sum,bool k)
{
int r=n;
if(k){m[sum]=js;r/=;}
else
{
if(m.find(mm - sum)!=m.end())
ans=min(ans,js+m[mm-sum]);
}
for(int i=last;i<r;i++)
dfs(js+,i+,sum+w[i],k);
}
int main()
{
scanf("%d%lld",&n,&mm);
for(int i=;i<n;i++)
scanf("%d",&w[i]);
dfs(,,,true);
dfs(,n/,,false);
printf("%d\n",ans);
return ;
}

codevs 2144 砝码称重2的更多相关文章

  1. Codevs 2144 砝码称重 2

    2144 砝码称重 2  时间限制: 1 s  空间限制: 16000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 有n个砝码,现在要称一个质量为m ...

  2. Codevs No.2144 砝码称重2

    2016-05-31 22:01:16 题目链接: 砝码称重2 (Codevs No.2144) 题目大意: 给定N个砝码,求称出M的重量所需砝码最小个数 解法: 贪心 使砝码数量最小,当然是每个砝码 ...

  3. NOI题库--砝码称重V2(多重背包2^n拆分)

    以前只会写多重背包的原版,渣的不行,为了做此题不得不学习了一下,发现其实也不难,只要理解了方法就好多了(PS:其实和倍增挺像的) 8756:砝码称重V2 总时间限制: 1000ms 内存限制: 655 ...

  4. 安徽省2016“京胜杯”程序设计大赛_A_砝码称重

    砝码称重 Time Limit: 1000 MS Memory Limit: 65536 KB Total Submissions: 61 Accepted: 37 Description 小明非常喜 ...

  5. P2347 砝码称重-DP方案数-bitset

    P2347 砝码称重 DP做法 : 转化为 01背包. 进行方案数 更新.最后统计种类. #include<bits/stdc++.h> using namespace std; #def ...

  6. 51nod 1449 砝码称重 (进制思想)

    1449 砝码称重 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 现在有好多种砝码,他们的重量是 w0,w1,w ...

  7. 51nod 1837 砝码称重【数学,规律】

    题目链接:51nod 1837 砝码称重 小 Q 有 n 个砝码,它们的质量分别为 1 克. 2 克.……. n 克. 他给 i 克的砝码标上了编号 i (i = 1, 2, ..., n),但是编号 ...

  8. P2347 砝码称重

    P2347 砝码称重 题目描述 设有1g.2g.3g.5g.10g.20g的砝码各若干枚(其总重<=1000), 输入输出格式 输入格式: 输入方式:a1 a2 a3 a4 a5 a6 (表示1 ...

  9. 洛谷P1441 砝码称重

    P1441 砝码称重 题目描述 现有n个砝码,重量分别为a1,a2,a3,……,an,在去掉m个砝码后,问最多能称量出多少不同的重量(不包括0). 输入输出格式 输入格式: 输入文件weight.in ...

随机推荐

  1. 用Putty连接Linux

    随着linux应用的普及,linux管理越来越依赖远程管理.在各种telnet类工具中,putty是其中最出色的一个. 一.Putty简介     Putty是一个免费小巧的Win32平台下的teln ...

  2. jquery中this和$(this)使用的地方

    插件中this代表$('元素')选择器 on()函数中this代表单个元素,$(this)代表单个选择器 反正有时代表整体,有时代表单个,代表单个时可以用$(this)来把他变成jquery对象

  3. 蓝桥杯OJ PREV-19 九宫重排

    题目描写叙述:   历届试题 九宫重排   时间限制:1.0s   内存限制:256.0MB        问题描写叙述 如以下第一个图的九宫格中,放着 1~8 的数字卡片.另一个格子空着.与空格子相 ...

  4. POJ 2456 Aggressive cows (二分 基础)

    Aggressive cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7924   Accepted: 3959 D ...

  5. 华为云测平台服务再升级!华为M5系列平板调测能力正式上线!

    ​​​6月1日,华为M5系列平板设备兼容性测试和远程真机调试功能在华为终端开放实验室正式上线!助力您的产品在大屏适配上快人一步! 华为终端开放实验室DevEco平台现已提供基于华为M5系列平板设备的兼 ...

  6. 【转载】【selenium+Python WebDriver】之元素定位

    总结: 感谢: “煜妃”<Selenuim+Python之元素定位总结及实例说明> “Huilaojia123”<selenium WebDriver定位元素学习总结> “上海 ...

  7. Windows+VS+SVN实现版本控制

    Subversion已经是一个热门话题,下面介绍一下Windows下Subversion和TortoiseSVN构建SVN版本控制 问题. 首先看一些基础知识: Subversion是架设一个SVN ...

  8. linux程序设计——网络信息(第十五章)

    15.3    网络信息 当眼下为止,客户和server程序一直是吧地址和port号编译到它们自己的内部. 对于一个更通用的server和客户程序来说.能够通过网络信息函数来决定应该使用的地址和por ...

  9. Spring、Hibernate 数据不能插入到数据库问题解决

    1.问题:在使用Spring.Hibernate开发的数据库应用中,发现不管如何,数据都插不到数据库. 可是程序不报错.能查询到,也能插入. 2.分析:Hibernate设置了自己主动提交仍然无论用, ...

  10. Java知识点梳理——读写分离

    1.读写分离:可以通过Spring提供的AbstractRoutingDataSource类,重写determineCurrentLookupKey方法,实现动态切换数据源的功能:读写分离可以有效减轻 ...