1、TensorFlow中Tensor维度理解:

(1)对于2维Tensor 0维对应列 1维对应行
(2)维度操作举例:
  对于k维的,tf.reduce_sum(x, axis=k-1)的结果是对最里面一维所有元素进行求和。
  tf.reduce_sum(x, axis=k-2)是对倒数第二层里的向量对应的元素进行求和。
  tf.reduce_sum(x, axis=k-3)把倒数第三层的每个向量对应元素相加。
2、tensorflow中用来拼接张量的函数tf.concat(),用法:

tf.concat([tensor1, tensor2, tensor3,...], axis)
先给出tf源代码中的解释:

t1 = [[1, 2, 3], [4, 5, 6]]
      t2 = [[7, 8, 9], [10, 11, 12]]
      tf.concat([t1, t2], 0)  # [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
      tf.concat([t1, t2], 1)  # [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
     
      # tensor t3 with shape [2, 3]
      # tensor t4 with shape [2, 3]
      tf.shape(tf.concat([t3, t4], 0))  # [4, 3]
      tf.shape(tf.concat([t3, t4], 1))  # [2, 6]

这里解释了当axis=0和axis=1的情况,怎么理解这个axis呢?其实这和numpy中的np.concatenate()用法是一样的。
axis=0     代表在第0个维度拼接
axis=1     代表在第1个维度拼接
对于一个二维矩阵,第0个维度代表最外层方括号所框下的子集,第1个维度代表内部方括号所框下的子集。维度越高,括号越小。
对于这种情况,我可以再解释清楚一点:
对于[ [ ], [ ]]和[[ ], [ ]],低维拼接等于拿掉最外面括号,高维拼接是拿掉里面的括号(保证其他维度不变)。

注意:tf.concat()拼接的张量只会改变一个维度,其他维度是保存不变的。
比如两个shape为[2,3]的矩阵拼接,要么通过axis=0变成[4,3],要么通过axis=1变成[2,6]。改变的维度索引对应axis的值。
这样就可以理解多维矩阵的拼接了,可以用axis的设置来从不同维度进行拼接。
对于三维矩阵的拼接,自然axis取值范围是[0, 1, 2]。
对于axis等于负数的情况
负数在数组索引里面表示倒数(countdown)。比如,对于列表ls = [1,2,3]而言,ls[-1] = 3,表示读取倒数第一个索引对应值。
axis=-1表示倒数第一个维度,对于三维矩阵拼接来说,axis=-1等价于axis=2。同理,axis=-2代表倒数第二个维度,对于三维矩阵拼接来说,axis=-2等价于axis=1。
一般在维度非常高的情况下,我们想在最'高'的维度进行拼接,一般就直接用countdown机制,直接axis=-1就搞定了。

Tensorflow知识点学习的更多相关文章

  1. Java核心知识点学习----多线程中的阻塞队列,ArrayBlockingQueue介绍

    1.什么是阻塞队列? 所谓队列,遵循的是先进先出原则(FIFO),阻塞队列,即是数据共享时,A在写数据时,B想读同一数据,那么就将发生阻塞了. 看一下线程的四种状态,首先是新创建一个线程,然后,通过s ...

  2. Java核心知识点学习----使用Condition控制线程通信

    一.需求 实现线程间的通信,主线程循环3次后,子线程2循环2次,子线程3循环3次,然后主线程接着循环3次,如此循环3次. 即:A->B->C---A->B->C---A-> ...

  3. Java核心知识点学习----线程中如何创建锁和使用锁 Lock,设计一个缓存系统

    理论知识很枯燥,但这些都是基本功,学完可能会忘,但等用的时候,会发觉之前的学习是非常有意义的,学习线程就是这样子的. 1.如何创建锁? Lock lock = new ReentrantLock(); ...

  4. (转) TensorFlow深度学习,一篇文章就够了

    TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6   原文出处: 我爱计算机 (@tobe迪豪 )    作者: 陈迪 ...

  5. TensorFlow简易学习[3]:实现神经网络

    TensorFlow本身是分布式机器学习框架,所以是基于深度学习的,前一篇TensorFlow简易学习[2]:实现线性回归对只一般算法的举例只是为说明TensorFlow的广泛性.本文将通过示例Ten ...

  6. TensorFlow深度学习,一篇文章就够了

    http://blog.jobbole.com/105602/ 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数 ...

  7. windows下Anaconda3配置TensorFlow深度学习库

    Anaconda3(python3.6)安装tensorflow Anaconda3中安装tensorflow3是非常简单的,仅需通过 pip install tensorflow 测试代码: imp ...

  8. 问题集录--TensorFlow深度学习

    TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe ...

  9. 没有博士学位,照样玩转TensorFlow深度学习

    教程 | 没有博士学位,照样玩转TensorFlow深度学习 机器之心2017-01-24 12:32:22 程序设计 谷歌 操作系统 阅读(362)评论(0) 选自Codelabs 机器之心编译 参 ...

随机推荐

  1. PHP百分号转小数

    <?php $a = "20.544545%"; echo (float)$a/100; ?>

  2. nexus-2.11.4-01-bundle.tar.gz 下载地址

    wget http://sonatype-download.global.ssl.fastly.net/nexus/oss/nexus-2.11.4-01-bundle.tar.gz 注意原本的是ht ...

  3. On Using Very Large Target Vocabulary for Neural Machine Translation Candidate Sampling Sampled Softmax

    [softmax分类器的加速器] https://www.tensorflow.org/api_docs/python/tf/nn/sampled_softmax_loss This is a fas ...

  4. 将众多小文件输入Hadoop的解决方案 可挂载的HDFS

    配置HDFS为可挂载后: 1-可挂载后才支持非完整POSIX语义: 2-仍然不支持随机写入,仍然为“一次写入,多次读取”: 3-可能误用,导致众多小文件: : 1-使用Solr存储和检索小文件: 2- ...

  5. ubuntu 下解决sublime v3 中文输入法时 退格键删除不了拼音的问题

    ubuntu下,sulime想要支持中文需要这样设置: 1.安装中文输入解决的github git clone https://github.com/lyfeyaj/sublime-text-imfi ...

  6. client网络优化方法

    减小图片大小(使用WebP格式的图片)  大部分的Facebook应用数据都是图片,因此降低图片的大小就能够较少数据的下载量.从而加快下载速度,这一点在高延迟的网络环境下很重要.Facebook返回给 ...

  7. Hadoop-2.2.0中文文档—— MapReduce 下一代--容量调度器

    目的 这份文档描写叙述 CapacityScheduler,一个为Hadoop能同意多用户安全地共享一个大集群的插件式调度器,如他们的应用能适时被分配限制的容量. 概述 CapacitySchedul ...

  8. UVA - 11464 Even Parity 【暴力枚举】

    题意 给出一个 01 二维方阵 可以将里面的 0 改成1 但是 不能够 将 1 改成 0 然后这个方阵 会对应另外一个 方阵 另外一个方阵当中的元素 为 上 下 左 右 四个元素(如果存在)的和 要求 ...

  9. Linux安装ElasticSearch启动报错的解决方法

    Linux安装ElasticSearch后,ElasticSearch是不能用root用户启动的,以root用户启动会报错Refer to the log for complete error det ...

  10. BZOJ 3037 创世纪

    题解: 首先从基环树上的环上选两个点x,y 断开x,y之间的边,然后做树形DP. 设f[x]为选x的情况下的最大值,g[x]为不选x的情况下的最大值. 分两种情况讨论, 1.选x,则y一开始就处于被支 ...