HDU 5047 Sawtooth 高精度
题意:
给出一个\(n(0 \leq n \leq 10^{12})\),问\(n\)个\(M\)形的折线最多可以把平面分成几部分。
分析:
很容易猜出来这种公式一定的关于\(n\)的一个二次多项式。
不妨设\(f(n)=an^2+bn+c\)。
结合样例我们可以列出\(3\)个方程:
\(f(0)=1,f(1)=2,f(2)=19\)
解出三个系数\(a,b,c\),然后用高精度做即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL MOD = 1000000000;
struct Big
{
LL a[5];
Big() { memset(a, 0, sizeof(a)); }
Big(LL x) { memset(a, 0, sizeof(a)); a[1] = x / MOD; a[0] = x % MOD; }
void read() {
memset(a, 0, sizeof(a));
LL x; scanf("%lld", &x);
a[0] = x % MOD; a[1] = x / MOD;
}
Big operator + (const Big& t) const {
Big ans;
for(int i = 0; i < 5; i++) ans.a[i] = a[i];
for(int i = 0; i < 5; i++) {
ans.a[i] += t.a[i];
int j = i;
while(ans.a[j] >= MOD) {
ans.a[j + 1] += ans.a[j] / MOD;
ans.a[j++] %= MOD;
}
}
return ans;
}
Big operator * (const Big& t) const {
Big ans;
for(int i = 0; i < 5; i++) {
for(int j = 0; j < 5; j++) if(i + j < 5) {
ans.a[i + j] += a[j] * t.a[i];
int k = i + j;
while(ans.a[k] >= MOD) {
ans.a[k + 1] += ans.a[k] / MOD;
ans.a[k++] %= MOD;
}
}
}
return ans;
}
Big operator - (const Big& t) const {
Big ans;
for(int i = 0; i < 5; i++) ans.a[i] = a[i];
for(int i = 0; i < 5; i++) {
int j = i + 1;
if(ans.a[i] < t.a[i]) {
while(!ans.a[j]) j++;
ans.a[j]--;
for(int k = j - 1; k > i; k--) ans.a[k] += MOD - 1;
ans.a[i] += MOD;
}
ans.a[i] -= t.a[i];
}
return ans;
}
void output() {
int i = 0;
for(i = 4; i; i--) if(a[i]) break;
printf("%lld", a[i]);
for(int j = i - 1; j >= 0; j--) printf("%09lld", a[j]);
printf("\n");
}
};
int main()
{
int T; scanf("%d", &T);
for(int kase = 1; kase <= T; kase++) {
printf("Case #%d: ", kase);
Big x; x.read();
Big ans(1);
ans = ans + (Big(8) * x * x);
ans = ans - (Big(7) * x);
ans.output();
}
return 0;
}
HDU 5047 Sawtooth 高精度的更多相关文章
- HDU 5047 Sawtooth(大数优化+递推公式)
http://acm.hdu.edu.cn/showproblem.php?pid=5047 题目大意: 给n条样子像“m”的折线,求它们能把二维平面分成的面最多是多少. 解题思路: 我们发现直线1条 ...
- HDU 5047 Sawtooth(大数模拟)上海赛区网赛1006
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5047 解题报告:问一个“M”型可以把一个矩形的平面最多分割成多少块. 输入是有n个“M",现 ...
- HDU 5047 Sawtooth 找规律+拆分乘
Sawtooth Think about a plane: ● One straight line can divide a plane into two regions. ● Two lines ...
- 2014 网选 上海赛区 hdu 5047 Sawtooth
题意:求n个'M'型的折线将一个平面分成的最多的面数! 思路:我们都知道n条直线将一个平面分成的最多平面数是 An = An-1 + n+1 也就是f(n) = (n*n + n +2)/2 对于一个 ...
- HDU 5047
http://acm.hdu.edu.cn/showproblem.php?pid=5047 直到看到题解,我才知道这道题考的是什么 首先交点数是Σ(16*i),区域区分的公式是 边数+点数+1=分成 ...
- Hdu 5568 sequence2 高精度 dp
sequence2 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=556 ...
- hdu 1042 N!(高精度乘法 + 缩进)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1042 题目大意:求n!, n 的上限是10000. 解题思路:高精度乘法 , 因为数据量比较大, 所以 ...
- hdu 5047 大数找规律
http://acm.hdu.edu.cn/showproblem.php?pid=5047 找规律 信kuangbin,能AC #include <stdio.h> #include & ...
- HDU 4704 Sum (高精度+快速幂+费马小定理+二项式定理)
Sum Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & %I64u Submit Status ...
随机推荐
- CentOS7.2配置本地yum源
1.检查是否有本地yum源 1)检查是否能连网 ping www.baidu.com 2)检查是否有本地yum源 yum list 2.挂载镜像文件 以上检查,说明确实是内网,也确实没有本地yum源, ...
- MoinMoin install in apache (win)
一:下载环境 xampp:http://sourceforge.net/projects/xampp/files/XAMPP%20Windows/1.8.1/xampp-win32-1.8.1-VC9 ...
- Mysql系列常见面试题(三)
1.Mysql数据表在什么情况下容易损坏? 服务器突然断电导致数据文件损坏,强制关机,没有先关闭Mysql服务等. 2.Mysql有关全校的表都有那几个? Mysql服务器通过权限表老控制用户对数据库 ...
- Jsp动态生成表格
输入行列: <body> <form action="Train2ResultJsp.jsp"> row:<input type="text ...
- 使用 Kendo UI 库实现对象的继承
使用 Kendo UI 库实现对象的继承 javaScript 也是一种面向对象的开发语言,但和 C++,Java,C# 所不同的是,它的对象不是基于类(Class),而是基于对象原型(ProtoTy ...
- 读Linear Algebra -- Gilbert Strang
转眼间我的学士学位修读生涯已经快要到期了,重读线性代数,一是为了重新理解Algebra的的重要概念以祭奠大一刷过的计算题,二是为了将来的学术工作先打下一点点(薄弱的)基础.数学毫无疑问是指导着的科研方 ...
- [windows]窗口文件夹中使用常见任务
文件夹中使用常见任务,如截图所示增加红色框部分. 设置步骤: 我的电脑--〉右键--〉属性--〉高级选项--〉性能设置--〉自定义:勾选在文件夹中使用常见任务.
- 用代码判断当前系统是否支持某个版本的feature
JDK9已经出来有一段时间了,因此很多流行的Java应用纷纷增添了对JDK9乃至JDK10的支持,比如Tomcat. 我们通过这个链接下载最新的Tomcat源文件包,总共7MB: https://to ...
- UVA 11214 Guarding the Chessboard 守卫棋盘(迭代加深+剪枝)
暴力,和八皇后很像,用表示i+j和i-j标记主对角线,但是还是要加一些的剪枝的. 1.最裸的暴搜 6.420s,差点超时 2.之前位置放过的就没必要在放了,每次从上一次放的位置开始放 0.400s # ...
- Android(java)学习笔记117:SharedPreferences(轻量级存储类)
1.SharedPreferences是Android平台上一个轻量级的存储类,简单的说就是可以存储一些我们需要的变量信息.2个activity 之间的数据传递除了可以他通过intent来传递数据,还 ...