Objective-C Operators and Expressions
What is an Expression?
The most basic expression consists of an operator, two operands and an assignment. The following is an example of an expression:
1 int myresult = 1 + 2;
In the above example the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=) subsequently assigns the result of the addition to an integer variable named myresult. The operands could just have easily been variables (or a mixture of constants and variables) instead of the actual numerical values used in the example.
In the remainder of this chapter we will look at the various types of operators available in Objective-C.
The Basic Assignment Operator
We have already looked at the most basic of assignment operators, the = operator. This assignment operator simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands. The left hand operand is the variable to which a value is to be assigned and the right hand operand is the value to be assigned. The right hand operand is, more often than not, an expression which performs some type of arithmetic or logical evaluation, the result of which will be assigned to the variable. The following examples are all valid uses of the assignment operator:
int x; // declare the variable
x = 10; // Assigns the value 10 to a variable named x
x = y + z; // Assigns the result of variable y added to variable z to variable x
x = y; // Assigns the value of variable y to variable x
Assignment operators may also be chained to assign the same value to multiple variables. For example, the following code example assigns the value 20 to the x, y and z variables:
int x, y, z;
x = y = z = 20;
Objective-C Arithmetic Operators
Objective-C provides a range of operators for the purpose of creating mathematical expressions. These operators primarily fall into the category of binary operators in that they take two operands. The exception is the unary negative operator (-) which serves to indicate that a value is negative rather than positive. This contrasts with the subtraction operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:
int x = -10; // Unary - operator used to assign -10 to a variable named x
x = y - z; // Subtraction operator. Subtracts z from y
The following table lists the primary Objective-C arithmetic operators:
Note that multiple operators may be used in a single expression.
For example:
x = y * 10 + z - 5 / 4;
Whilst the above code is perfectly valid it is important to be aware that Objective-C does not evaluate the expression from left to right or right to left, but rather in an order specified by the precedence of the various operators. Operator precedence is an important topic to understand since it impacts the result of a calculation and will be covered in detail the chapter entitled Objective-C 2.0 Operator Precedence.
Compound Assignment Operators
In an earlier section we looked at the basic assignment operator (=). Objective-C provides a number of operators designed to combine an assignment with a mathematical or logical operation. These are primarily of use when performing an evaluation where the result is to be stored in one of the operands. For example, one might write an expression as follows:
x = x + y;
The above expression adds the value contained in variable x to the value contained in variable y and stores the result in variable x. This can be simplified using the addition compound assignment operator:
x += y
<google>IOSBOX</google> The above expression performs exactly the same task as x = x + y but saves the programmer some typing.
Numerous compound assignment operators are available in Objective-C. The most frequently used are outlined in the following table:
Increment and Decrement Operators
Another useful shortcut can be achieved using the Objective-C increment and decrement operators (also referred to as unary operators because they operate on a single operand). As with the compound assignment operators described in the previous section, consider the following Objective-C code fragment:
x = x + 1; // Increase value of variable x by 1
x = x - 1; // Decrease value of variable x by 1
These expressions increment and decrement the value of x by 1. Instead of using this approach it is quicker to use the ++ and -- operators. The following examples perform exactly the same tasks as the examples above:
x++; Increment x by 1
x--; Decrement x by 1
These operators can be placed either before or after the variable name. If the operator is placed before the variable name the increment or decrement is performed before any other operations are performed on the variable. For example, in the following example, x is incremented before it is assigned to y, leaving y with a value of 10:
int x = 9;
int y;
y = ++x;
In the next example, however, the value of x (9) is assigned to variable y before the decrement is performed. After the expression is evaluated the value of y will be 9 and the value of x will be 8.
int x = 9;
int y;
y = x--;
Comparison Operators
In addition to mathematical and assignment operators, Objective-C also includes set of logical operators useful for performing comparisons. These operators all return a Boolean (BOOL) true (1) or false (0) result depending on the result of the comparison. These operators are binary operators in that they work with two operands.
Comparison operators are most frequently used in constructing program flow control logic. For example an if statement may be constructed based on whether one value matches another:
if (x == y)
// Perform task
The result of a comparison may also be stored in a BOOL variable. For example, the following code will result in a true (1) value being stored in the variable result:
BOOL result;
int x = 10;
int y = 20;
result = x < y;
Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full set of Objective-C comparison operators:
Boolean Logical Operators
Objective-C also provides a set of so called logical operators designed to return boolean true and false. In practice true equates to 1 and false equates to 0. These operators both return boolean results and take boolean values as operands. The key operators are NOT (!), AND (&&), OR (||) and XOR (^).
The NOT (!) operator simply inverts the current value of a boolean variable, or the result of an expression. For example, if a variable named flag is currently 1 (true), prefixing the variable with a '!' character will invert the value to 0 (false):
bool flag = true; //variable is true
bool secondFlag;
secondFlag = !flag; // secondFlag set to false
The OR (||) operator returns 1 if one of its two operands evaluates to true, otherwise it returns 0. For example, the following example evaluates to true because at least one of the expressions either side of the OR operator is true:
if ((10 < 20) || (20 < 10))
NSLog (@"Expression is true");
The AND (&&) operator returns 1 only if both operands evaluate to be true. The following example will return 0 because only one of the two operand expressions evaluates to true:
if ((10 < 20) && (20 < 10))
NSLog (@"Expression is true");
The XOR (^) operator returns 1 if one and only one of the two operands evaluates to true. For example, the following example will return 1 since only one operator evaluates to be true:
if ((10 < 20) ^ (20 < 10))
NSLog (@"Expression is true");
If both operands evaluated to be true or both were false the expression would return false.
The Ternary Operator
Objective-C uses something called a ternary operator to provide a shortcut way of making decisions. The syntax of the ternary operator (also known as the conditional operator) is as follows:
[condition] ? [true expression] : [false expression]
The way this works is that [condition] is replaced with an expression that will return either true (1) or false (0). If the result is true then the expression that replaces the [true expression] is evaluated. Conversely, if the result was false then the [false expression] is evaluated. Let's see this in action:
int x = 10;
int y = 20;
NSLog(@"Largest number is %i", x > y ? x : y );
The above code example will evaluate whether x is greater than y. Clearly this will evaluate to false resulting in y being returned to the NSLog call for display to the user:
2009-10-07 11:14:06.756 t[5724] Largest number is 20
Bitwise Operators
In the chapter entitled Objective-C 2.0 Data Types we talked about the fact that computers work in binary. These are essentially streams of ones and zeros, each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we, as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Objective-C provides a range of bit operators. Those familiar with bitwise operators in other languages such as C, C++, C# and Java will find nothing new in this area of the Objective-C language syntax. For those unfamiliar with binary numbers, now may be a good time to seek out reference materials on the subject in order to understand how ones and zeros are formed into bytes to form numbers. Other authors have done a much better job of describing the subject than we can do within the scope of this book.
For the purposes of this exercise we will be working with the binary representation of two numbers. Firstly, the decimal number 171 is represented in binary as:
10101011
Secondly, the number 3 is represented by the following binary sequence:
00000011
Now that we have two binary numbers with which to work, we can begin to look at the Objective-C's bitwise operators:
Bitwise AND
The Bitwise AND is represented by a single ampersand (&). It makes a bit by bit comparison of two numbers. Any corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing in the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result. Taking our two example numbers, this would appear as follows:
10101011 AND
00000011
========
00000011
As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in Objective-C code, therefore, we should find that the result is 3 (00000011):

int x = 171;
int y = 3;
int z; z = x & y; // Perform a bitwise AND on the values held by variables x and y NSLog(@"Result is %i", z);

2009-10-07 15:38:09.176 t[12919] Result is 3
Bitwise OR
The bitwise OR also performs a bit by bit comparison of two binary sequences. Unlike the AND operation, the OR places a 1 in the result if there is a 1 in the first or second operand. The operator is represented by a single vertical bar character (|). Using our example numbers, the result will be as follows:
10101011 OR
00000011
========
10101011
If we perform this operation in an Objective-C example we see the following:

int x = 171;
int y = 3;
int z; z = x | y; NSLog(@"Result is %i", z);

2009-10-07 15:41:39.647 t[13153] Result is 171
Bitwise XOR
The bitwise XOR (commonly referred to as exclusive OR and represented by the caret '^' character) performs a similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For example:
10101011 XOR
00000011
========
10101000
The result in this case is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some Objective-C code:

int x = 171;
int y = 3;
int z; z = x ^ y; NSLog(@"Result is %i", z);

When executed, we get the following output from NSLog:
2009-10-07 16:09:40.097 t[13790] Result is 168
Bitwise Left Shift
The bitwise left shift moves each bit in a binary number a specified number of positions to the left. As the bits are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that once the left most (high order) bits are shifted beyond the size of the variable containing the value, those high order are discarded:
10101011 Left Shift one bit
========
01010110
In Objective-C the bitwise left shift operator is represented by the '<<' sequence, followed by the number of bit positions to be shifted. For example, to shift left by 1 bit:
int x = 171;
int z; z = x << 1; NSLog(@"Result is %i", z);
When compiled and executed, the above code will display a message stating that the result is 342 which, when converted to binary, equates to 101010110.
Bitwise Right Shift
A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite direction. Note that since we are shifting to the right there is no opportunity to retain the lower most bits regardless of the data type used to contain the result. As a result the low order bits are discarded. Whether or not the vacated high order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive and negative numbers is set or not and, unfortunately, on the particular system and Objective-C implementation in use.
10101011 Right Shift one bit
========
01010101
The bitwise right shift is represented by the '>>' character sequence followed by the shift count:
int x = 171;
int z; z = x >> 1; NSLog(@"Result is %i", z);
When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.
Compound Bitwise Operators
As with the arithmetic operators, each bitwise operator has a corresponding compound operator that allows the operation and assignment to be performed using a single operator:
Objective-C Operators and Expressions的更多相关文章
- [转]50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs
http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/ 50 Shades of Go: Traps, Gotc ...
- python27读书笔记0.3
#-*- coding:utf-8 -*- ##D.has_key(k): A predicate that returns True if D has a key k.##D.items(): Re ...
- scheme一页纸教程
这是一个大学教授写的,非常好,原文:http://classes.soe.ucsc.edu/cmps112/Spring03/languages/scheme/SchemeTutorialA.html ...
- 实例说明Java中的null
翻译人员: 铁锚 翻译时间: 2013年11月11日 原文链接: What exactly is null in Java? 让我们先来看下面的语句: String x = null; 1. 这个语句 ...
- 实例说明Java中的null(转)
让我们先来看下面的语句: String x = null; 1. 这个语句到底做了些什么? 让我们回顾一下什么是变量,什么是变量值.一个常见的比喻是 变量相当于一个盒子.如同可以使用盒子来储存物品一 ...
- A Byte of Python (for Python 3.0) 下载
在线阅读:http://www.swaroopch.org/notes/Python_en:Table_of_Contents 英文版 下载地址1:http://files.swaroopch.com ...
- Module ngx_http_rewrite_module
http://nginx.org/en/docs/http/ngx_http_rewrite_module.html Directives break if return ...
- SQL Server解惑——为什么ORDER BY改变了变量的字符串拼接结果
在SQL Server中可能有这样的拼接字符串需求,需要将查询出来的一列拼接成字符串,如下案例所示,我们需要将AddressID <=10的AddressLine1拼接起来,分隔符为|.如下 ...
- Automake
Automake是用来根据Makefile.am生成Makefile.in的工具 标准Makefile目标 'make all' Build programs, libraries, document ...
随机推荐
- linux 查看某进程 并杀死进程 ps grep kill
Linux 中使用top 或 ps 查看进程使用kill杀死进程 1.使用top查看进程: $top 进行执行如上命令即可查看top!但是难点在如何以进程的cpu占用量进行排序呢? cpu占用量排序执 ...
- bzoj 2151 种树——贪心+后悔
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2151 似乎是半年+前讲过的.(然而看到的时候却不会了) 考虑贪心,限制就是不能选两边的.如果 ...
- ftp主要流程
判断是否是root用户,若不是则提示并退出. 建立server socket. 等待用户连接,并建立相应用户的子进程.
- hibernate学习三 精解Hibernate之核心文件
一 hibernate.cfg.xml详解 1 JDBC连接: 2 配置C3P0连接池: 3 配置JNDI数据源: 4 可选的配置属性: 5 hibernate二级缓存属性 6 hibernate事务 ...
- [置顶]
谈EXPORT_SYMBOL使用
转自:http://blog.csdn.net/macrossdzh/article/details/4601648 EXPORT_SYMBOL只出现在2.6内核中,在2.4内核默认的非static ...
- 一、MyBatis简介
1.发展历史 MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为MyBa ...
- 5、overflow、hover
一.overflow 1.属性介绍 说明: 这个属性定义溢出元素内容区的内容会如何处理.如果值为 scroll,不论是否需要,用户代理都会提供一种滚动机制.因此,有可能即使元素框中可以放下所有内容也会 ...
- 接口开发之PHP创建XML文件
用PHP的DOM控件来创建输出 输出的格式为XML 接口开发的相关文件及说明 <?php header("Content-type: text/xml");//头文件非常重要 ...
- UVa 658 It's not a Bug, it's a Feature! (状态压缩+Dijstra)
题意:首先给出n和m,表示有n个bug和m个补丁.一开始存在n个bug,用1表示一个bug存在0表示不存在,所以一开始就是n个1,我们的目的是要消除所有的bug, 所以目标状态就是n个0.对于每个补丁 ...
- 笔记-JavaWeb学习之旅11
请求转发:一种在服务器内部的资源跳转方式 使用步骤 1.通过request对象获取请求转发器对象:RequestDispatcher getRequestDispatcher(String path) ...