转 怎样解读10046 trace (tkprof 的结果 )
set autot on
SQL> set autotrace
Usage: SET AUTOT[RACE] {OFF | ON | TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]
set autot on exp stat
TKProf Structure
TKProf output for an individual cursor has the following structure:
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.00 0.00 0 3 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 0.00 0.00 0 3 0 1
Misses in library cache during parse: 0
Optimizer goal: FIRST_ROWS
Parsing user id: 271
Rows Row Source Operation
------- ---------------------------------------------------
1 TABLE ACCESS FULL DUAL (cr=3 pr=0 pw=0 time=21 us cost=1 size=1 card=1)
Elapsed times include waiting on following events:
Event waited on Times Max. Wait Total Waited
---------------------------------------- Waited ---------- ------------
SQL*Net message to client 2 0.00 0.00
SQL*Net message from client 2 0.00 0.00
Overall the structure is:
- SQL Statement
- Parse/Execute/Fetch statistics and timings
- Library Cache information
- Row source plan
- Events waited for by the statement
Parse/Execute/Fetch statistics and timings
This section contains the bulk of the useful timing information for each statement. This can be used in conjunction with the 'Row source plan' and 'Events waited for by the statement' to give the full picture.
Columns in the Parse/Execute/Fetch table have the following meanings:
call | Statistics for each cursor's activity are divided in to 3 areas: Parse/Execute/Fetch. A total is also calculated. |
Parse | statistics from parsing the cursor. This includes information for plan generation etc. |
Execute | statistics for the execution phase of a cursor |
Fetch | statistics for actually fetching the rows |
count | number of times each individual activity has been performed on this particular cursor |
cpu | cpu time used by this cursor |
elapsed | elapsed time for this cursor (includes the cpu time) |
disk | This indicates the number of blocks read from disk. Generally it would be preferable for blocks to be read from the buffer cache rather than disk. |
query | This column is incremented if a buffer is read in Consistent mode. A Consistent mode buffer is one that has been generated to give a consistent read snapshot for a long running transaction. |
current | This column is incremented if a buffer is found in the buffer cache that is new enough for the current transaction and is in current mode (and it is not a CR buffer). This applies to buffers that have been read in to the cache as well as buffers that already exist in the cache in current mode. |
rows | Rows retrieved by this step |
Library Cache information
Tracing a statement records some information regarding library cache usage which is externalised by TKProf in this section. Most important here is "Misses in library cache during parse:" which shows whether or not a statement is being re-parsed. If a statement is being shared well then you should see a minimal number of misses here (1 or 0 preferably). If sharing is not occurring then high values in this field can indicate that.
Row source plan
This section displays the access path used at execution time for each statement along with timing and actual row counts returned by each step in the plan. This can be very useful for a number of reasons.
Row source plans are generated from STAT lines in the raw trace.
STAT lines are written to trace every now and then, but sometimes, if the cursor is not closed cleanly then STAT lines will not be recorded and then the row source plan will not be displayed. Setting SQL_TRACE to false DOES NOT close all cursors. Cursors are closed in SQL*Plus immediately after execution. The safest way to close all cursors is to cleanly exit the session in question. See:
For details of interpreting 10046 output see:
Example:
------- ---------------------------------------------------
[A] 1 TABLE ACCESS FULL DUAL [B] (cr=3 [C] pr=0 [D] pw=0 [E] time=21 us [F] cost=7 [G] size=7 [H] card=1 [I])
- Row count [A]- the row counts output in this section are the actual number of rows returned at each step in the query execution. These actual counts can be compared with the estimated cardinalities (row counts) from an optimizer explain plan. Any differences may indicate a statistical problem that may result in a poor plan choice.
See:Document 214106.1 Using TKProf to compare actual and predicted row counts - Row Source Operation [B] - Shows the operation executed at this step in the plan.
- IO Stats - For each step in the plan, [C] is the consistent reads, [D] is the physical reads and [E] is the writes. These statistics can be useful in identifying steps that read or write a particularly large proportion of the overall data.
- Timing - [F] shows the cumulative elapsed time for the step and the steps that preceded it in microseconds (µs: 1/1000000 of a second). This section is very useful when looking for the point in an access path that takes all the time. By looking for the point at where the majority of the time originates it is possible to narrow down a number of problems.
- On later releases, row source trace has been enhanced to include some optimizer information. [G] is the estimated cost of the operation used by the optimizer for internal comparison, [H] is the estimated space usage of the operation in bytes and [I] is estimated cardinality (number of rows returned) of that particular operation.
Note that TKProf also contains an explain plan feature which allows users to generate the explain plan the statement in question would use if it were to be executed NOW as the specified user. When looking at previously executed statements it is advisable not to use this option and to rely on the Row Source plans generated from the STAT lines in the trace, as above. See the TKProf section in:
Events waited for by the statement
This section displays all wait events that a statement has waited for during the tracing. This section can be very useful when used in conjunction with the statistics and row source information for tracking down the causes of problems associated with long wait times. High numbers of waits or waits with a long total duration may be candidates for investigation dependent on the wait itself.
General Tips
If a system is performing sub-optimally then one potential way of diagnosing potential causes is to trace a typical user session and then use TKProf to format the output. The numerous sort options available can provide a useful way of organising the output by moving the 'top' statement in a particular category to the top of the list. A list of the sort options can be accessed by simply typing 'TKProf' at the command prompt.
A useful starting point is the 'fchela' sort option which orders the output by elapsed time spent fetching. The resultant .prf file will display the most time consuming SQL statement at the start of the file.
For actions to deal with degraded query performance located in this manner see:
Another useful parameter is sys=yes/no. This can be used to prevent SQL statements run as user SYS from being displayed. This can make the output file much shorter and easier to manage.
Remember to always set the TIMED_STATISTICS parameter to TRUE when tracing sessions as otherwise no time based comparisons can be made.
Potential TKProf Usage Examples
Spotting Relatively High Resource Usage
where ...
-----------------------------------------------------------------------
| call | count | cpu | elapsed | disk | query | current | rows |
|---------|-------|-----|---------|------|---------|---------|--------|
| Parse | 1 | 7 | 122 | 0 | 0 | 0 | 0 |
| Execute | 1 | 75 | 461 | 5 | [H] 297 | [I] 3 | [J] 1 |
| Fetch | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-----------------------------------------------------------------------
This statement is a single execute of an update.
[H] shows that this query is visiting 297 buffers to find the rows to update
[I] shows that only 3 buffer are visited performing the update
[J] shows that only 1 row is updated.
Reading 297 buffers to update 1 rows is a lot of work and would tend to indicate that the access path being used is not particularly efficient. Perhaps there is an index missing that would improve the access performance?
Spotting Over Parsing
-------------------------------------------------------------------------
| call | count | cpu | elapsed | disk | query | current | rows |
|---------|-------|---------|---------|------|--------|---------|-------|
| Parse | [M] 2 | [N] 221 | 329 | 0 | 45 | 0 | 0 |
| Execute | 3 | [O] 9 | [P] 17 | 0 | 0 | 0 | 0 |
| Fetch | 3 | 6 | 8 | 0 | [L] 4 | 0 | [K] 1 |
-------------------------------------------------------------------------
Misses in library cache during parse: 2 [Q]
Here we have a select that we suspect may be a candidate for over parsing.
[K] is shows that the query has returned 1 row.
[L] shows that 4 buffers were read to get this row back.
This is fine.
[M] show that the statement is parsed twice - this is not desirable especially as the parse cpu usage is a high [N] in comparison to the execute figures : [O] & [P] (ie the elapsed time for execute is 17 seconds but the statement spends over 300 seconds to determine the access path etc in the parse phase.
[Q] shows that these parses are hard parses. If [Q] was 1 then the statement would have had 1 hard parse followed by a soft parse (which just looks up the already parsed detail in the library cache). See:
for more details.
This is not a particularly bad example in terms of total counts since the query has only been executed a few times. However if this pattern is reproduced for each execution this could be a significant issue. Excessive parsing should be avoided as far as possible by ensuring that code is shared:
- using bind variables
- make shared pool large enough to hold query definitions in memory long enough to be reused.
See:
Spotting Queries that Execute too frequently
The following query has a high elapsed time and is a candidate for investigation:
SET ...
WHERE COL = :bind1;
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- --------
Parse 0 0.00 0.00 0 0 0 0
Execute 488719 66476.95 66557.80 1 488729 1970566 488719
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- --------
total 488719 66476.95 66557.80 1 488729 1970566 488719
From the above, the update executes 488,719 times and takes in total ~ 65,000 seconds to do this. The majority of the time is spent on CPU. A single row is updated per execution. For each row updated ~1 buffer is queried. ~2 million buffers are visited to perform the update.
On average the elapsed time is ~ 0.1 second per execution. A sub-second execution time would normally be acceptable for most queries, but if the query is not scaleable and is executed numerous times, then the time can quickly add up to a large number.
It would appear that in this case the update may be part of a loop where individual values are passsed and 1 row is updated per value. This structure does not scale with large number of values meaning that it can become inefficient.
One potential solution is to try to 'batch up' the updates so that multiple rows are updated within the same execution. As Oracle releases have progressed a number of optimizations and enhancements have been made to improve the handling of 'batch' operations and to make them more efficient. In this way, code modifications to replace frequently executed relatively inefficient statements by more scaleable operations can have a significant impact.
Trace File Elapsed Time Total Differs From Total SQL Time
Sometimes you may see tkprof report that shows the elapsed time does not match the overall total for all recursive sql statements + overall total time for all non-recursive statements:
OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 1
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.00 0.00 0 0 0 1 <---------Total non-recursive SQL is 0 seconds
OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 101 0.23 0.53 0 1 22 0
Execute 11115914 713.48 849.96 183 281305 1021 213
Fetch 11115842 1080.26 2981.83 643 160564747 0 11121030
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 22231857 1793.97 3832.33 826 160846053 1043 11121243 <------------Total for all recursive SQL is 3,832 seconds
Trace file: support_ora_1111111_sample_.trc
Trace file compatibility: 11.1.0.7
Sort options: fchela exeela prsela
1 session in tracefile.
47 user SQL statements in trace file.
24 internal SQL statements in trace file.
71 SQL statements in trace file.
42 unique SQL statements in trace file.
52492692 lines in trace file.
10538 elapsed seconds in trace file. <--------------elapsed time in trace is 10,538 seconds
There appears to be 6706 missing in the trace file.
This is expected behavior if you start tracing a session that has already started.
To ensure that elapsed seconds matches the session total, you need to begin the tracing at the start of the session.
转 怎样解读10046 trace (tkprof 的结果 )的更多相关文章
- 10046 trace详解(2)--tkprof
10046或10053生成的文件格式比较乱,直接查看有一定的困难,ORACLE自带的一个格式化命令工具tkprof可以将生成的.trc文件进行格式化,具体用说如下: 一.直接输入tkprof不带任 ...
- Oracle 10046 trace文件分析
生成10046 trace文件: SQL> create table t10046 as select * from dba_objects; Table created. SQL> se ...
- 10046 trace详解(1)
10046 trace帮助我们解析一条/多条SQL.PL/SQL语句的运行状态,这些状态包括:Parse/Fetch/Execute三个阶段中遇到的等待事件.消耗的物理和逻辑读.CPU时间.执行计划等 ...
- 如何利用RMAN Debug和10046 Trace来诊断RMAN问题?
学习转摘:https://blogs.oracle.com/Database4CN/entry/%E5%A6%82%E4%BD%95%E5%88%A9%E7%94%A8rman_debug%E5%92 ...
- [Oracle]如何查看 10046 trace 中的 tim= ... 的具体时刻
可以在 Linux 下,用下列方式: 如10046 trace 文件中如果有如下的内容:... tim = 1503032923 可以用 date 命令加 option 来看它的时刻: date - ...
- 如何利用RMAN Debug和10046 Trace来诊断RMAN问题?
在做Support的这些年,我很大的收获是掌握了许多troubleshooting问题的方法和工具,对于每一类问题,都可以大体归类出一些诊断方法.无论问题多么复杂,像扒洋葱一样,一层层去掉无 ...
- 10046 trace and sql
1. SQLT 下载 从metalink上下载SQLT工具,参考文档 (以下大部分(SQL可以在sqlt\utl 目录下找到)) 1.1 SQLT 安装 SQLT安装在自己的schema SQLT ...
- PLSQL_性能优化工具系列05_SQL Trace/Event 10046 Trace
2014-06-25 Created By BaoXinjian
- Oracle SQL Trace 和 10046 事件
http://blog.csdn.net/tianlesoftware/article/details/5857023 一. SQL_TRACE 当SQL语句出现性能问题时,我们可以用SQL_TRAC ...
随机推荐
- python生成图片
# -*- coding:utf-8 -*- from pylab import * figure(1,figsize=(6,6)) ax = axes([0.1,0.1,0.8,0.8]) frac ...
- codeforces 467B Fedor and New Game 解题报告
题目链接:http://codeforces.com/contest/467/problem/B 题目意思:有 m + 1 个 player 和 n 种类型的 soldiers.每个player被赋予 ...
- hdu-5773 The All-purpose Zero(LIS)
题目链接: The All-purpose Zero Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (J ...
- [APIO 2017] 商旅
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5367 [算法] 很明显的分数规划问题 预处理从一个点走到另一个点所获最大利润和最短路 ...
- SKINTOOL 系统不能正常运行
1..net安装 2.Microsoft Visual C++ Redistributable Package 运行库
- mfc给对话框添加背景
void CMyProjetDlg::OnPaint() { CPaintDC dc(this);//用于绘制设备的上下文 CRect rect; GetClientRect(&rect); ...
- Python_XML的三种解析方法
什么是XML? XML 指可扩展标记语言(eXtensible Markup Language). XML 被设计用来传输和存储数据. XML是一套定义语义标记的规则,这些标记将文档分成许多部件并对这 ...
- 技术胖Flutter第四季-19导航父子页面的跳转返回
技术胖Flutter第四季-19导航父子页面的跳转返回 博客地址: https://jspang.com/post/flutter4.html#toc-010 onPressed是当前按下的时候,按下 ...
- Flutter实战视频-移动电商-44.详细页_首屏自定义Widget编写
44.详细页_首屏自定义Widget编写 把详细页的图片.标题.编号和价格形成一个单独的widget去引用 详情页的顶部单独封装个插件 在pages下面新建detials_page的文件件并在里面新建 ...
- Flex AIR组件
1.FileSystemComboBox .directory = File.appli / desk/doc / directoryChange 2.FileSystemTree可返回 好用 ...