题目链接

BZOJ2396

题解

一种快速判断两个矩阵是否相等的方法:

对于两个\(n * n\)矩阵,两边同时乘一个\(n * 1\)的随机矩阵,如果结果相等,那么有很大概率两个矩阵相等

如果左边是\(A * B\)的话,用矩阵的结合律先让\(B\)乘就好了,这样子总是一个\(n * n\)的矩阵乘一个\(n * 1\)的矩阵

复杂度\(O(n^2)\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int a[maxn][maxn],b[maxn][maxn],c[maxn][maxn],d[maxn];
int s[maxn],t1[maxn],t2[maxn],n,flag;
void mul(int a[][maxn],int b[maxn],int s[maxn]){
REP(i,n){
s[i] = 0;
REP(j,n) s[i] += a[i][j] * b[j];
}
}
int main(){
while (~scanf("%d",&n)){
flag = true;
REP(i,n) REP(j,n) a[i][j] = read();
REP(i,n) REP(j,n) b[i][j] = read();
REP(i,n) REP(j,n) c[i][j] = read();
REP(i,n) d[i] = rand();
mul(b,d,s);
mul(a,s,t1);
mul(c,d,t2);
REP(i,n) if (t1[i] != t2[i]) {puts("No"); flag = false; break;}
if (flag) puts("Yes");
}
return 0;
}

BZOJ2396 神奇的矩阵 【随机化 + 矩乘】的更多相关文章

  1. bzoj2396: 神奇的矩阵

    与51nod1140一样.不过这题是多组数据的...坑.... #include<cstdio> #include<cstring> #include<cctype> ...

  2. bzoj2396: 神奇的矩阵(矩阵乘法+随机化)

    这题n三方显然会GG... 运用矩阵乘法的性质A*B*R=A*(B*R)=C*R,于是随机化出一个一列的R,就可以把复杂度降低成n方...大概率是不会错的 #include<iostream&g ...

  3. 【bzoj2396】神奇的矩阵 随机化

    题目描述 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立. 输入 题目可能包含若干组数据.对于每组数据,第一行一个数N,接下来给出三个N*N的矩阵,依次为A.B.C三个矩阵. 输出 ...

  4. bzoj2396 神奇的矩阵(随机化)

    Time Limit: 5 Sec  Memory Limit: 512 MB 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立. 题目可能包含若干组数据.    对于每组数据,第一行 ...

  5. [Swust OJ 1126]--神奇的矩阵(BFS,预处理,打表)

    题目链接:http://acm.swust.edu.cn/problem/1126/ Time limit(ms): 1000 Memory limit(kb): 65535 上一周里,患有XX症的哈 ...

  6. 神奇的矩阵 NOI模拟题

    神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...

  7. [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】

    题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...

  8. 数学&模拟:随机化-矩阵随机化

    BZOJ2396 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立 随机生成一个N乘1的矩阵R 然后判断A*B*R是否等于C*R,而前者相当于A*(B*R) 与后者一样都可以在O(N2 ...

  9. D.Starry的神奇魔法(矩阵快速幂)

    /*D: Starry的神奇魔法 Time Limit: 1 s      Memory Limit: 128 MB Submit My Status Problem Description     ...

随机推荐

  1. JS判断单、多张图片加载完成

    转:http://www.daqianduan.com/6419.html 试想,如果模板中有图片,此时如何判断图片是否加载完成? 在此之前来了解一下jquery的ready与window.onloa ...

  2. bootstrap2文档的学习

    就像刚开始的 优雅,直观,强大的前端框架,让web开发更快,更容易,bootstrap给我的感觉就是把常用的布局,组件(导航,列表,按钮,表格),还有规范化颜色等等,同时它的遍历不至于此,他还支持了自 ...

  3. IE脚本调试

    打开IE -- 工具 -- Internet选项 -- 高级 --有4项. 1.禁用脚本调试(Internet Explorer)(去掉对勾) 2.禁用脚本调试(其他)(去掉对勾) 3.显示每个脚本错 ...

  4. mysql添加、移除服务

    sc delete 服务名 路径/bin/mysqld --install 服务名

  5. JavaScript 遍历对象查找指定的值并返回路径

    问:JavaScript 如何查找对象中某个 value 并返回路径上所有的 key? let obj = { key1: 'str1', key2: { key3: 'str3' }, key4: ...

  6. RSA等非对称加密为什么要用公钥加密,而用私钥解密?

    1.RSA是不对称加密算法,它的公钥可能会被多人持有(公钥公钥,公开的密钥),而私钥只有一人拥有,例如支付宝开放平台,私钥只有支付宝公司持有,而公钥则是所有接入它API的公司都能得到.对于公钥加密的信 ...

  7. wamp mysql服务意外停止

    出现问题: MySQL启动一段时间之后,意外停止.可以再次启动,但是过不了多久又自动停止了. 发现问题: 查看错误日志,发现以下问题: 解决方案: 网上网友分享以下操作: 1.删除data文件夹里面的 ...

  8. LeetCode#453 最小移动次数使数组元素相等

    给定一个长度为 n 的非空整数数组,找到让数组所有元素相等的最小移动次数.每次移动可以使 n - 1 个元素增加 1. 示例: 输入: [,,] 输出: 解释: 只需要3次移动(注意每次移动会增加两个 ...

  9. java一些问题的解答

    1.java 枚举类型和数据二进制等问题思考 以下代码的输出结果是什么?为什么会有这样的输出结果? int X=100; int Y=200; System.out.println("X+Y ...

  10. [Noip2016]换教室(期望+DP)

    Description 题目链接:Luogu Solution 这题结合了DP和概率与期望,其实只要稍微知道什么是期望就可以了, 状态的构造很关键,\(F[i][j][0/1]\)表示已经到第\(i\ ...