题目:https://www.luogu.org/problemnew/show/P4721

分治做法,考虑左边对右边的贡献即可;

注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以只做到 2*(r-l),能快一倍。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),mod=;
int n,f[xn],g[xn],a[xn],b[xn],rev[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void ntt(int *a,int tp,int lim)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int wn=pw(,tp==?(mod-)/(mid<<):(mod-)-(mod-)/(mid<<));
for(int j=,len=(mid<<);j<lim;j+=len)
for(int k=,w=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
if(tp==)return; int inv=pw(lim,mod-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
}
void work(int l,int r)
{
if(l==r)return;
int len=r-l+,mid=((l+r)>>);
work(l,mid); int lim=,L=;
while(lim<=(r-l))lim<<=,L++;//max:r-l
for(int i=;i<lim;i++)rev[i]=((rev[i>>]>>)|((i&)<<(L-)));
for(int i=;i<lim;i++)a[i]=b[i]=;//
for(int i=l;i<=mid;i++)a[i-l]=f[i];
for(int i=;i<len;i++)b[i]=g[i];
ntt(a,,lim); ntt(b,,lim);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*b[i]%mod;
ntt(a,-,lim);
for(int i=mid+;i<=r;i++)f[i]=upt(f[i]+a[i-l]);
work(mid+,r);
}
int main()
{
n=rd(); f[]=;
for(int i=;i<n;i++)g[i]=rd();
work(,n-);
for(int i=;i<n;i++)printf("%d ",f[i]); puts("");
return ;
}

多项式求逆做法感觉很妙:

设 \( F(x) = \sum f_{i}*x_{i} \),\( G(x) = \sum g_{i}*x_{i} \)

则 \( F(x) * G(x) = \sum x_{i} * \sum\limits_{j=0}^{i} f_{j}*g_{i-j} \)

即 \( F(x) * G(x) = F(x) - f_{0}*x_{0} \)

所以 \( F(x) = (1-G(x))^{-1} \)

多项式求逆即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),mod=;
int n,f[xn],g[xn],c[xn],rev[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void ntt(int *a,int tp,int lim)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int p=mod-,len=(mid<<),wn=pw(,tp==?p/len:p-p/len);
for(int j=;j<lim;j+=len)
for(int k=,w=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
if(tp==)return; int inv=pw(lim,mod-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
}
void inv(int *a,int *b,int n)
{
if(n==){b[]=pw(a[],mod-); return;}
inv(a,b,(n+)>>);
int lim=,l=;
while(lim<n+n)lim<<=,l++;
for(int i=;i<lim;i++)rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
for(int i=;i<n;i++)c[i]=a[i];
for(int i=n;i<lim;i++)c[i]=;
ntt(c,,lim); ntt(b,,lim);
for(int i=;i<lim;i++)b[i]=((ll)-(ll)c[i]*b[i])%mod*b[i]%mod;
ntt(b,-,lim);
for(int i=n;i<lim;i++)b[i]=;
}
int main()
{
n=rd(); f[]=; g[]=;
for(int i=;i<n;i++)g[i]=-rd();
inv(g,f,n);
for(int i=;i<n;i++)printf("%d ",f[i]); puts("");
return ;
}

洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆的更多相关文章

  1. 洛谷P3711 仓鼠的数学题(伯努利数+多项式求逆)

    题面 传送门 题解 如果您不知道伯努利数是什么可以去看看这篇文章 首先我们把自然数幂和化成伯努利数的形式 \[\sum_{i=1}^{n-1}i^k={1\over k+1}\sum_{i=0}^k{ ...

  2. 洛谷P4721 【模板】分治 FFT(生成函数+多项式求逆)

    传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x) ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. NOIP 2013 洛谷P1966 火柴排队 (树状数组求逆序对)

    对于a[],b[]两个数组,我们应选取其中一个为基准,再运用树状数组求逆序对的方法就行了. 大佬博客:https://www.cnblogs.com/luckyblock/p/11482130.htm ...

  5. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  6. 洛谷 P4721 【模板】分治 FFT 解题报告

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\d ...

  7. 洛谷P4721 【模板】分治 FFT(分治FFT)

    传送门 多项式求逆的解法看这里 我们考虑用分治 假设现在已经求出了$[l,mid]$的答案,要计算他们对$[mid+1,r]$的答案的影响 那么对右边部分的点$f_x$的影响就是$f_x+=\sum_ ...

  8. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  9. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

随机推荐

  1. ssh port forwarding

    SSH端口转发,总是忘记,今天记录下.端口转发有两种,一个是local一个是remote(可能还有一种dynamic,还没有研究) 贴个链接 https://www.ssh.com/ssh/tunne ...

  2. poj1206(dp)

    题目链接:http://poj.org/problem?id=1260 Pearls Time Limit: 1000MS   Memory Limit: 10000K Total Submissio ...

  3. WampServer无法直接打开myprojects的解决方法

    https://jingyan.baidu.com/article/7e4409533ace042fc1e2ef40.html

  4. eclipse中三大利器

    eclipse中两大利器: 首先说下用eclipse开发工具.进行java代码,开发的时候,我们开发完成以后.需要测试.大部分我们用Junit测试工具.可是内部的代码覆盖率.和结构我们看的不是那么详细 ...

  5. hadoop 小文件 挂载 小文件对NameNode的内存消耗 HDFS小文件解决方案 客户端 自身机制 HDFS把块默认复制3次至3个不同节点。

    hadoop不支持传统文件系统的挂载,使得流式数据装进hadoop变得复杂. hadoo中,文件只是目录项存在:在文件关闭前,其长度一直显示为0:如果在一段时间内将数据写到文件却没有将其关闭,则若网络 ...

  6. 【iOS开发-63】Unknown type name &quot;CGRect&quot;,did you mean &quot;Rect&quot;?的解决方式

    出现这个问题的童鞋,差点儿都是由于用了Xcode6. 原因:在Xcode6之前,创建的文件系统会自己主动为用户导入Foundation.h和UIKit.h文件,可是最新的Xcode6仅仅为用户导入了F ...

  7. discuz论坛搬家

    很多站长第一次做网站的时候,无奈选择了速度不是很稳定的空间,慢慢会发现有很多物美价廉速度相当快的空间 这个时候,站长在网站搬家的过程中就会遇到很多困难,今天老袋鼠给大家详细讲解一下discuz论坛搬家 ...

  8. sap crm 常用表

    [转自 http://blog.csdn.net/zhongguomao/article/details/6714616] SAP CRM 参数文件集目标组常用表: CRMD_MKTTG_TG_T C ...

  9. myeclipse破解补丁激活失败方法

    查看本博客前,请先参考博客:http://blog.csdn.net/miss_kun/article/details/51819048 有时候,激活的时候不成功,比如我的是myeclipse2014 ...

  10. Window7 环境下 MariaDB 的安装 及使用

    MariaDB数据库管理系统是MySQL的一个分支,主要由开源社区在维护,采用GPL授权许可.开发这个分支的原因之一是:甲骨文公司收购了MySQL后,有将MySQL闭源的潜在风险,因此社区采用分支的方 ...