题意:

给n个城市,m条有向边。每条边有权值,如今有些城市能够选择得到。可选的城市有一个价值。可是要满足从1到达不了这些城市,为了满足要求能够去掉一些边,须要花费边的权值,问终于得到的最大价值是多少,并给出方案。

最小割 = 最大流

建图非常easy。源点就是1,设置汇点T。

按图中的有向边关系连边。

对于全部的可选择的城市u,连一条u->T的容量为w的边。

跑一遍最大流。即为最小割。

ans = sum - 最小割。

写出方案。就是走一遍bfs。看 哪些满流边(而且边的汇不是T,这是由于这种边是所选的城市扩展的边),打出来就好。

代码:

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<cstring>
using namespace std;
const int N = 1000 + 10 ;
const int inf = 1000000000;
typedef long long ll;
struct Edge
{
int from,to,cap,flow;
};
int n,m,s,t,num,f;
int w[N],use[N];
int vis[2*N],cur[2*N];
vector<int> G[2*N];
vector<Edge> edges;
queue<int> cut;
void init()
{
edges.clear();
for(int i=1;i<=n;i++) G[i].clear();
memset(vis,0,sizeof(vis));
}
int add(int u,int v,int c)
{
edges.push_back((Edge){u,v,c,0});
edges.push_back((Edge){v,u,0,0});
num = edges.size();
G[u].push_back(num-2);
G[v].push_back(num-1);
}
int bfs()
{
int front;
memset(vis,0,sizeof(vis));
vis[s] = 1;
queue<int> q;
q.push(s);
while(!q.empty()){
front = q.front(); q.pop();
for(int i=0;i<G[front].size();i++)
{
Edge& e = edges[G[front][i]];
if(!vis[e.to] && e.cap > e.flow)
{
q.push(e.to);
vis[e.to] = vis[front]+1;
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t || a==0) return a;
int f=0,flow=0;
for(int i=0;i<G[x].size();i++){
Edge& e = edges[G[x][i]];
if(vis[e.to]==vis[x]+1 && (f=dfs(e.to,min(a,e.cap-e.flow)))>0 )
{
flow += f;
e.flow += f;
a -= f;
edges[G[x][i]^1].flow -= f;
if(a==0) break;
}
}
return flow;
}
int dinic()
{
int flow = 0;
while(bfs())
{
memset(cur,0,sizeof(cur));
flow += dfs(s,inf);
}
return flow;
}
void find_cut()
{
while(!cut.empty()) cut.pop();
memset(vis,0,sizeof(vis));
vis[1] = 1;
queue<int> q;
q.push(1);
int front;
while(!q.empty()){
front = q.front(); q.pop();
for(int i=0;i<G[front].size();i++){
Edge& e = edges[G[front][i]];
if(!vis[e.to] && e.cap > e.flow){
vis[e.to] = 1;
q.push(e.to);
}
}
}
for(int i=1;i<=n;i++){
if(vis[i])
for(int j=0;j<G[i].size();j++){
Edge& e = edges[G[i][j]];
if(G[i][j]&1) continue;
if(e.to!=t && !vis[e.to])
cut.push(G[i][j]/2+1);
}
}
return ;
}
void print_cut()
{
int len = cut.size();
int ro;
cout<<len<<" ";
for(int i=1;i<len;i++){
ro = cut.front();
cut.pop();
printf("%d ",ro);
}
ro = cut.front();
cut.pop();
printf("%d\n",ro);
}
int main()
{
int T,cas=0;
scanf("%d",&T);
while(T--){
ll sum = 0;
scanf("%d%d%d",&n,&m,&f);
init();
s = 1; t = n+1;
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
for(int i=1;i<=f;i++){
int u,w;
scanf("%d%d",&u,&w);
add(u,t,w);
sum += w;
}
ll ans = dinic();
find_cut();
printf("Case %d: %lld\n",++cas,sum-ans);
print_cut();
}
return 0;
}

hdu3251 最小割的更多相关文章

  1. HDU3251 Being a Hero(最小割)

    题目大概一个国家n个城市由m条单向边相连,摧毁每条边都有一个费用.现在你可以选择所给的f个城市中的若干个,每个城市选择后都有一定的价值,但首都1号城市必须到达不了你选择的城市,因为你可能需要摧毁一些边 ...

  2. HDU3251 最大流(最小割)

    Being a Hero Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  3. 最大流&最小割 - 专题练习

    [例1][hdu5889] - 算法结合(BFS+Dinic) 题意 \(N\)个点\(M\)条路径,每条路径长度为\(1\),敌人从\(M\)节点点要进攻\(1\)节点,敌人总是选择最优路径即最短路 ...

  4. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  5. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  6. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  7. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  8. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  9. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

随机推荐

  1. spl_autoload_register和__autoload

    1.实例化一个未定义的类时会触发 2.类存在继承关系时,被继承的类没有引入的情况下,会触发 (继承关系的两个类必须在同一个目录下)  __autoload 实例化PRINTIT类,'PRINTIT'作 ...

  2. 用js判断浏览器类型及设备

    <!DOCTYPE html> <html> <head> <title>JS判断是什么设备是什么浏览器</title> <meta ...

  3. 北京集训TEST13——PA(第k小数)

    题目: Description [问题描述] 从n个数中选若干(至少1)个数求和,求所有方案中第k小的和(和相同但取法不同的视为不同方案).[输入格式]    第一行输入2个正整数n,k.    第二 ...

  4. 基于RESTful 的几种实现(就随便了解一下)

    百度来的,原文未标出处,侵删. 1.1. RailsRuby on Rails是新兴的敏捷Web开发框架,在动态语言Ruby的支持下,Rails以新鲜的视角告诉我们Web开发是简单而快乐的.Rails ...

  5. java面试题之spring aop中jdk和cglib哪个动态代理的性能更好?

    在jdk6和jdk7的时候,jdk比cglib要慢: 在jdk8的时候,jdk性能得到提升比cglib要快很多: 结论出自:https://www.cnblogs.com/xuliugen/p/104 ...

  6. Z-Order(转)

    原文转自 http://www.th7.cn/system/win/201406/60715.shtml 窗口在子窗口链中的先后顺序也就是窗口在屏幕上显示时的前后顺序,在子窗口链里位置越靠前的窗口显示 ...

  7. Linux 之 Xunsearch(2)

    Linux 之 Xunsearch(2) 参考教程:[千峰教育] Xunsearch的项目配置文件: 基本说明: (1)项目配置是一个项目的核心灵魂,非常重要,通常保存为.ini文件, 通常存储在/u ...

  8. POJ 2577: Interpreter

    简略解题报告 Description A certain computer has 10 registers and 1000 words of RAM. Each register or RAM l ...

  9. docker mysql 导入导出数据

    导出数据 1.导出mysql单张表结构和数据: docker exec -it my-mysql mysqldump dbname -uroot -p123456 --tables tname > ...

  10. hdu4635 有向图最多添加多少边使图仍非强连通

    思路:先缩点成有向无环图,则必然含有出度为0的点/入度为0的点,因为要使添加的边尽量多,最多最多也就n*(n-1)条减去原来的m条边,这样是一个强连通图,问题转化为最少去掉几条,使图不强连通,原来图中 ...