SHA-1算法c语言实现
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息。SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要能够用来验证数据的完整性。在传输的过程中。数据非常可能会发生变化,那么这时候就会产生不同的消息摘要。
SHA1有例如以下特性:不能够从消息摘要中复原信息;两个不同的消息不会产生相同的消息摘要。
算法实现的版本号比較多,下面代码来自:http://download.csdn.net/detail/zhangrulzu/2936159,代码行数非常少,但确实实现了想要的效果。
下载的SHA-1算法:
#include<stdio.h>
void creat_w(unsigned char input[64],unsigned long w[80])
{
int i,j;unsigned long temp,temp1;
for(i=0;i<16;i++)
{
j=4*i;
w[i]=((long)input[j])<<24 |((long)input[1+j])<<16|((long)input[2+j])<<8|((long)input[3+j])<<0; }
for(i=16;i<80;i++)
{
w[i]=w[i-16]^w[i-14]^w[i-8]^w[i-3];
temp=w[i]<<1;
temp1=w[i]>>31;
w[i]=temp|temp1; }
}
char ms_len(long a,char intput[64])
{
unsigned long temp3,p1; int i,j;
temp3=0;
p1=~(~temp3<<8);
for(i=0;i<4;i++)
{
j=8*i;
intput[63-i]=(char)((a&(p1<<j))>>j); } }
main()
{
unsigned long H0=0x67452301,H1=0xefcdab89,H2=0x98badcfe,H3=0x10325476,H4=0xc3d2e1f0;
unsigned long A,B,C,D,E,temp,temp1,temp2,temp3,k,f;int i,flag;unsigned long w[80];
unsigned char input[64]; long x;int n;
printf("input message:\n");
scanf("%s",input);
n=strlen(input);
if(n<57)
{
x=n*8;
ms_len(x,input);
if(n==56)
for(i=n;i<60;i++)
input[i]=0;
else
{
input[n]=128;
for(i=n+1;i<60;i++)
input[i]=0;
} } creat_w(input,w);
/*for(i=0;i<80;i++)
printf("%lx,",w[i]);*/
printf("\n");
A=H0;B=H1;C=H2;D=H3;E=H4;
for(i=0;i<80;i++)
{
flag=i/20;
switch(flag)
{
case 0: k=0x5a827999;f=(B&C)|(~B&D);break;
case 1: k=0x6ed9eba1;f=B^C^D;break;
case 2: k=0x8f1bbcdc;f=(B&C)|(B&D)|(C&D);break;
case 3: k=0xca62c1d6;f=B^C^D;break;
}
/*printf("%lx,%lx\n",k,f); */
temp1=A<<5;
temp2=A>>27;
temp3=temp1|temp2;
temp=temp3+f+E+w[i]+k;
E=D;
D=C; temp1=B<<30;
temp2=B>>2;
C=temp1|temp2;
B=A;
A=temp; printf("%lx,%lx,%lx,%lx,%lx\n",A,B,C,D,E);
}
H0=H0+A;
H1=H1+B;
H2=H2+C;
H3=H3+D;
H4=H4+E;
printf("\noutput hash value:\n");
printf("%lx,%lx,%lx,%lx,%lx",H0,H1,H2,H3,H4);
getch();
}
这里对算法验证过程做一个记录说明:
Visual Studio 2005,文件》新建》项目》Visual c++》Win32控制台应用程序,输入项目名称“SHA1”。完毕;
把下载的代码贴到SHA1.cpp文件末尾,复制“int _tmain(int argc, _TCHAR* argv[])”,删除_tmain函数。替换“main()”;
编译代码。提示下面错误:
错误 2 error C3861: “strlen”: 找不到标识符 e:\devlop\sha1\sha1\sha1.cpp 43
错误 3 error C2664: “ms_len”: 不能将參数 2 从“unsigned char [64]”转换为“char []” e:\devlop\sha1\sha1\sha1.cpp 47
错误 4 error C3861: “getch”: 找不到标识符 e:\devlop\sha1\sha1\sha1.cpp 98
第一条是警告。能够不处理
警告 1 warning C4996: 'scanf': This function or variable may be unsafe. Consider using scanf_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See online help for details. e:\devlop\sha1\sha1\sha1.cpp 42
双击错误2。定位到错误位置,在“strlen"上单击鼠标右键》Refactor》Add Include,例如以下图:
假设没有这一项,那应该是没有安装VC助手的原因;
双击错误3,定位到错误位置。在变量input前加(char*)强制转换;
双击错误4,定位到错误位置,在“getch"上单击鼠标右键》Refactor》Add Include;
按F6键编译项目,发现还有错误:
错误 2 error C2664: “strlen”: 不能将參数 1 从“unsigned char [64]”转换为“const char *” e:\devlop\sha1\sha1\sha1.cpp 45
双击错误2,定位到错误位置,在input前加(LPSTR)强制转换,编译。还有错误:
错误 2 error C2065: “LPSTR”: 未声明的标识符 e:\devlop\sha1\sha1\sha1.cpp 45
错误 3 error C2146: 语法错误 : 缺少“)”(在标识符“input”的前面) e:\devlop\sha1\sha1\sha1.cpp 45
错误 4 error C2059: 语法错误 : “)” e:\devlop\sha1\sha1\sha1.cpp 45
还是找不到标识符。方法一样:在“LPSTR"上单击鼠标右键》Refactor》Add Include;
再编译。又报错:
错误 4 error C4716: “ms_len”: 必须返回一个值 e:\devlop\sha1\sha1\sha1.cpp 38
定位到错误位置,细致看了一下,这个函数的返回值应该没什么用,随便返回一个:return '0';
再编译,OK。最终生成成功了。
F5调试,输入:abcd,回车。哦。输出了好多东东,查看代码的输出调用,
找到92行应该没用,凝视://printf("%lx,%lx,%lx,%lx,%lx\n",A,B,C,D,E);//输出编码过程。
最后得到的SHA1哈希值中还有逗号,找到100行。将printf("%lx,%lx,%lx,%lx,%lx",H0,H1,H2,H3,H4);格式化字符串中的逗号去掉;
再编译。F5调试。输入:abcd,回车,结果例如以下图:
得到的结果对不正确呢。找到一个在线SHA1加密工具,输入abcd,结果例如以下:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGVzdGNzX2Ru/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" />
对照一下,OK,结果一至。
改动后的SHA-1算法:
// SHA1.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include<stdio.h>
#include <string.h>
#include <conio.h>
#include <wtypes.h>
void creat_w(unsigned char input[64],unsigned long w[80])
{
int i,j;unsigned long temp,temp1;
for(i=0;i<16;i++)
{
j=4*i;
w[i]=((long)input[j])<<24 |((long)input[1+j])<<16|((long)input[2+j])<<8|((long)input[3+j])<<0; }
for(i=16;i<80;i++)
{
w[i]=w[i-16]^w[i-14]^w[i-8]^w[i-3];
temp=w[i]<<1;
temp1=w[i]>>31;
w[i]=temp|temp1; }
}
char ms_len(long a,char intput[64])
{
unsigned long temp3,p1; int i,j;
temp3=0;
p1=~(~temp3<<8);
for(i=0;i<4;i++)
{
j=8*i;
intput[63-i]=(char)((a&(p1<<j))>>j); }
return '0';
}
int _tmain(int argc, _TCHAR* argv[])
{
unsigned long H0=0x67452301,H1=0xefcdab89,H2=0x98badcfe,H3=0x10325476,H4=0xc3d2e1f0;
unsigned long A,B,C,D,E,temp,temp1,temp2,temp3,k,f;int i,flag;unsigned long w[80];
unsigned char input[64]; long x;int n;
printf("input message:\n");
scanf("%s",input);
n=strlen((LPSTR)input);
if(n<57)
{
x=n*8;
ms_len(x,(char*)input);
if(n==56)
for(i=n;i<60;i++)
input[i]=0;
else
{
input[n]=128;
for(i=n+1;i<60;i++)
input[i]=0;
} } creat_w(input,w);
/*for(i=0;i<80;i++)
printf("%lx,",w[i]);*/
printf("\n");
A=H0;B=H1;C=H2;D=H3;E=H4;
for(i=0;i<80;i++)
{
flag=i/20;
switch(flag)
{
case 0: k=0x5a827999;f=(B&C)|(~B&D);break;
case 1: k=0x6ed9eba1;f=B^C^D;break;
case 2: k=0x8f1bbcdc;f=(B&C)|(B&D)|(C&D);break;
case 3: k=0xca62c1d6;f=B^C^D;break;
}
/*printf("%lx,%lx\n",k,f); */
temp1=A<<5;
temp2=A>>27;
temp3=temp1|temp2;
temp=temp3+f+E+w[i]+k;
E=D;
D=C; temp1=B<<30;
temp2=B>>2;
C=temp1|temp2;
B=A;
A=temp; //printf("%lx,%lx,%lx,%lx,%lx\n",A,B,C,D,E);//输出编码过程
}
H0=H0+A;
H1=H1+B;
H2=H2+C;
H3=H3+D;
H4=H4+E;
printf("\noutput hash value:\n");
printf("%lx%lx%lx%lx%lx",H0,H1,H2,H3,H4);
getch();
}
改动后项目源代码下载:http://download.csdn.net/detail/testcs_dn/7344003
注意:此代码存在局限性,字符数大于57的时候,结果就不正确了!
sha-1仅仅满足64比特的输入 期中有8比特是用于长度的所以大于57的就加不了密了!
研究算法原理的朋友请參考:Redis源代码中探秘SHA-1算法原理及其编程实现
以及下面的RFC文档:没有找到中文版。看E文吧!
RFC中已经给出了实现代码。感兴趣的小伙伴能够提取出来验证!
Network Working Group D. Eastlake, 3rd
Request for Comments: 3174 Motorola
Category: Informational P. Jones
Cisco Systems
September 2001 US Secure Hash Algorithm 1 (SHA1) Status of this Memo This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2001). All Rights Reserved. Abstract The purpose of this document is to make the SHA-1 (Secure Hash
Algorithm 1) hash algorithm conveniently available to the Internet
community. The United States of America has adopted the SHA-1 hash
algorithm described herein as a Federal Information Processing
Standard. Most of the text herein was taken by the authors from FIPS
180-1. Only the C code implementation is "original". Acknowledgements Most of the text herein was taken from [FIPS 180-1]. Only the C code
implementation is "original" but its style is similar to the
previously published MD4 and MD5 RFCs [RFCs 1320, 1321]. The SHA-1 is based on principles similar to those used by Professor
Ronald L. Rivest of MIT when designing the MD4 message digest
algorithm [MD4] and is modeled after that algorithm [RFC 1320]. Useful comments from the following, which have been incorporated
herein, are gratefully acknowledged: Tony Hansen
Garrett Wollman Eastlake & Jones Informational [Page 1] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 Table of Contents 1. Overview of Contents........................................... 2
2. Definitions of Bit Strings and Integers........................ 3
3. Operations on Words............................................ 3
4. Message Padding................................................ 4
5. Functions and Constants Used................................... 6
6. Computing the Message Digest................................... 6
6.1 Method 1...................................................... 6
6.2 Method 2...................................................... 7
7. C Code......................................................... 8
7.1 .h file....................................................... 8
7.2 .c file....................................................... 10
7.3 Test Driver................................................... 18
8. Security Considerations........................................ 20
References........................................................ 21
Authors' Addresses................................................ 21
Full Copyright Statement.......................................... 22 1. Overview of Contents NOTE: The text below is mostly taken from [FIPS 180-1] and assertions
therein of the security of SHA-1 are made by the US Government, the
author of [FIPS 180-1], and not by the authors of this document. This document specifies a Secure Hash Algorithm, SHA-1, for computing
a condensed representation of a message or a data file. When a
message of any length < 2^64 bits is input, the SHA-1 produces a
160-bit output called a message digest. The message digest can then,
for example, be input to a signature algorithm which generates or
verifies the signature for the message. Signing the message digest
rather than the message often improves the efficiency of the process
because the message digest is usually much smaller in size than the
message. The same hash algorithm must be used by the verifier of a
digital signature as was used by the creator of the digital
signature. Any change to the message in transit will, with very high
probability, result in a different message digest, and the signature
will fail to verify. The SHA-1 is called secure because it is computationally infeasible
to find a message which corresponds to a given message digest, or to
find two different messages which produce the same message digest.
Any change to a message in transit will, with very high probability,
result in a different message digest, and the signature will fail to
verify. Eastlake & Jones Informational [Page 2] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 Section 2 below defines the terminology and functions used as
building blocks to form SHA-1. 2. Definitions of Bit Strings and Integers The following terminology related to bit strings and integers will be
used: a. A hex digit is an element of the set {0, 1, ... , 9, A, ... , F}.
A hex digit is the representation of a 4-bit string. Examples: 7
= 0111, A = 1010. b. A word equals a 32-bit string which may be represented as a
sequence of 8 hex digits. To convert a word to 8 hex digits each
4-bit string is converted to its hex equivalent as described in
(a) above. Example: 1010 0001 0000 0011 1111 1110 0010 0011 = A103FE23. c. An integer between 0 and 2^32 - 1 inclusive may be represented as
a word. The least significant four bits of the integer are
represented by the right-most hex digit of the word
representation. Example: the integer 291 = 2^8+2^5+2^1+2^0 =
256+32+2+1 is represented by the hex word, 00000123. If z is an integer, 0 <= z < 2^64, then z = (2^32)x + y where 0 <=
x < 2^32 and 0 <= y < 2^32. Since x and y can be represented as
words X and Y, respectively, z can be represented as the pair of
words (X,Y). d. block = 512-bit string. A block (e.g., B) may be represented as a
sequence of 16 words. 3. Operations on Words The following logical operators will be applied to words: a. Bitwise logical word operations X AND Y = bitwise logical "and" of X and Y. X OR Y = bitwise logical "inclusive-or" of X and Y. X XOR Y = bitwise logical "exclusive-or" of X and Y. NOT X = bitwise logical "complement" of X. Eastlake & Jones Informational [Page 3] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 Example: 01101100101110011101001001111011
XOR 01100101110000010110100110110111
--------------------------------
= 00001001011110001011101111001100 b. The operation X + Y is defined as follows: words X and Y
represent integers x and y, where 0 <= x < 2^32 and 0 <= y < 2^32.
For positive integers n and m, let n mod m be the remainder upon
dividing n by m. Compute z = (x + y) mod 2^32. Then 0 <= z < 2^32. Convert z to a word, Z, and define Z = X +
Y. c. The circular left shift operation S^n(X), where X is a word and n
is an integer with 0 <= n < 32, is defined by S^n(X) = (X << n) OR (X >> 32-n). In the above, X << n is obtained as follows: discard the left-most
n bits of X and then pad the result with n zeroes on the right
(the result will still be 32 bits). X >> n is obtained by
discarding the right-most n bits of X and then padding the result
with n zeroes on the left. Thus S^n(X) is equivalent to a
circular shift of X by n positions to the left. 4. Message Padding SHA-1 is used to compute a message digest for a message or data file
that is provided as input. The message or data file should be
considered to be a bit string. The length of the message is the
number of bits in the message (the empty message has length 0). If
the number of bits in a message is a multiple of 8, for compactness
we can represent the message in hex. The purpose of message padding
is to make the total length of a padded message a multiple of 512.
SHA-1 sequentially processes blocks of 512 bits when computing the
message digest. The following specifies how this padding shall be
performed. As a summary, a "1" followed by m "0"s followed by a 64-
bit integer are appended to the end of the message to produce a
padded message of length 512 * n. The 64-bit integer is the length
of the original message. The padded message is then processed by the
SHA-1 as n 512-bit blocks. Eastlake & Jones Informational [Page 4] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 Suppose a message has length l < 2^64. Before it is input to the
SHA-1, the message is padded on the right as follows: a. "1" is appended. Example: if the original message is "01010000",
this is padded to "010100001". b. "0"s are appended. The number of "0"s will depend on the original
length of the message. The last 64 bits of the last 512-bit block
are reserved for the length l of the original message. Example: Suppose the original message is the bit string 01100001 01100010 01100011 01100100 01100101. After step (a) this gives 01100001 01100010 01100011 01100100 01100101 1. Since l = 40, the number of bits in the above is 41 and 407 "0"s
are appended, making the total now 448. This gives (in hex) 61626364 65800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000. c. Obtain the 2-word representation of l, the number of bits in the
original message. If l < 2^32 then the first word is all zeroes.
Append these two words to the padded message. Example: Suppose the original message is as in (b). Then l = 40
(note that l is computed before any padding). The two-word
representation of 40 is hex 00000000 00000028. Hence the final
padded message is hex 61626364 65800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000028. The padded message will contain 16 * n words for some n > 0.
The padded message is regarded as a sequence of n blocks M(1) ,
M(2), first characters (or bits) of the message. Eastlake & Jones Informational [Page 5] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 5. Functions and Constants Used A sequence of logical functions f(0), f(1),..., f(79) is used in
SHA-1. Each f(t), 0 <= t <= 79, operates on three 32-bit words B, C,
D and produces a 32-bit word as output. f(t;B,C,D) is defined as
follows: for words B, C, D, f(t;B,C,D) = (B AND C) OR ((NOT B) AND D) ( 0 <= t <= 19) f(t;B,C,D) = B XOR C XOR D (20 <= t <= 39) f(t;B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59) f(t;B,C,D) = B XOR C XOR D (60 <= t <= 79). A sequence of constant words K(0), K(1), ... , K(79) is used in the
SHA-1. In hex these are given by K(t) = 5A827999 ( 0 <= t <= 19) K(t) = 6ED9EBA1 (20 <= t <= 39) K(t) = 8F1BBCDC (40 <= t <= 59) K(t) = CA62C1D6 (60 <= t <= 79). 6. Computing the Message Digest The methods given in 6.1 and 6.2 below yield the same message digest.
Although using method 2 saves sixty-four 32-bit words of storage, it
is likely to lengthen execution time due to the increased complexity
of the address computations for the { W[t] } in step (c). There are
other computation methods which give identical results. 6.1 Method 1 The message digest is computed using the message padded as described
in section 4. The computation is described using two buffers, each
consisting of five 32-bit words, and a sequence of eighty 32-bit
words. The words of the first 5-word buffer are labeled A,B,C,D,E.
The words of the second 5-word buffer are labeled H0, H1, H2, H3, H4.
The words of the 80-word sequence are labeled W(0), W(1),..., W(79).
A single word buffer TEMP is also employed. To generate the message digest, the 16-word blocks M(1), M(2),...,
M(n) defined in section 4 are processed in order. The processing of
each M(i) involves 80 steps. Eastlake & Jones Informational [Page 6] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 Before processing any blocks, the H's are initialized as follows: in
hex, H0 = 67452301 H1 = EFCDAB89 H2 = 98BADCFE H3 = 10325476 H4 = C3D2E1F0. Now M(1), M(2), ... , M(n) are processed. To process M(i), we
proceed as follows: a. Divide M(i) into 16 words W(0), W(1), ... , W(15), where W(0)
is the left-most word. b. For t = 16 to 79 let W(t) = S^1(W(t-3) XOR W(t-8) XOR W(t-14) XOR W(t-16)). c. Let A = H0, B = H1, C = H2, D = H3, E = H4. d. For t = 0 to 79 do TEMP = S^5(A) + f(t;B,C,D) + E + W(t) + K(t); E = D; D = C; C = S^30(B); B = A; A = TEMP; e. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4
+ E. After processing M(n), the message digest is the 160-bit string
represented by the 5 words H0 H1 H2 H3 H4. 6.2 Method 2 The method above assumes that the sequence W(0), ... , W(79) is
implemented as an array of eighty 32-bit words. This is efficient
from the standpoint of minimization of execution time, since the
addresses of W(t-3), ... ,W(t-16) in step (b) are easily computed.
If space is at a premium, an alternative is to regard { W(t) } as a Eastlake & Jones Informational [Page 7] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 circular queue, which may be implemented using an array of sixteen
32-bit words W[0], ... W[15]. In this case, in hex let MASK = 0000000F. Then processing of M(i) is as follows: a. Divide M(i) into 16 words W[0], ... , W[15], where W[0] is the
left-most word. b. Let A = H0, B = H1, C = H2, D = H3, E = H4. c. For t = 0 to 79 do s = t AND MASK; if (t >= 16) W[s] = S^1(W[(s + 13) AND MASK] XOR W[(s + 8) AND
MASK] XOR W[(s + 2) AND MASK] XOR W[s]); TEMP = S^5(A) + f(t;B,C,D) + E + W[s] + K(t); E = D; D = C; C = S^30(B); B = A; A = TEMP; d. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4
+ E. 7. C Code Below is a demonstration implementation of SHA-1 in C. Section 7.1
contains the header file, 7.2 the C code, and 7.3 a test driver. 7.1 .h file /*
* sha1.h
*
* Description:
* This is the header file for code which implements the Secure
* Hashing Algorithm 1 as defined in FIPS PUB 180-1 published
* April 17, 1995.
*
* Many of the variable names in this code, especially the
* single character names, were used because those were the names
* used in the publication.
*
* Please read the file sha1.c for more information.
*
*/ Eastlake & Jones Informational [Page 8] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 #ifndef _SHA1_H_
#define _SHA1_H_ #include <stdint.h>
/*
* If you do not have the ISO standard stdint.h header file, then you
* must typdef the following:
* name meaning
* uint32_t unsigned 32 bit integer
* uint8_t unsigned 8 bit integer (i.e., unsigned char)
* int_least16_t integer of >= 16 bits
*
*/ #ifndef _SHA_enum_
#define _SHA_enum_
enum
{
shaSuccess = 0,
shaNull, /* Null pointer parameter */
shaInputTooLong, /* input data too long */
shaStateError /* called Input after Result */
};
#endif
#define SHA1HashSize 20 /*
* This structure will hold context information for the SHA-1
* hashing operation
*/
typedef struct SHA1Context
{
uint32_t Intermediate_Hash[SHA1HashSize/4]; /* Message Digest */ uint32_t Length_Low; /* Message length in bits */
uint32_t Length_High; /* Message length in bits */ /* Index into message block array */
int_least16_t Message_Block_Index;
uint8_t Message_Block[64]; /* 512-bit message blocks */ int Computed; /* Is the digest computed? */
int Corrupted; /* Is the message digest corrupted? */
} SHA1Context; /*
* Function Prototypes
*/ Eastlake & Jones Informational [Page 9] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 int SHA1Reset( SHA1Context *);
int SHA1Input( SHA1Context *,
const uint8_t *,
unsigned int);
int SHA1Result( SHA1Context *,
uint8_t Message_Digest[SHA1HashSize]); #endif 7.2 .c file /*
* sha1.c
*
* Description:
* This file implements the Secure Hashing Algorithm 1 as
* defined in FIPS PUB 180-1 published April 17, 1995.
*
* The SHA-1, produces a 160-bit message digest for a given
* data stream. It should take about 2**n steps to find a
* message with the same digest as a given message and
* 2**(n/2) to find any two messages with the same digest,
* when n is the digest size in bits. Therefore, this
* algorithm can serve as a means of providing a
* "fingerprint" for a message.
*
* Portability Issues:
* SHA-1 is defined in terms of 32-bit "words". This code
* uses <stdint.h> (included via "sha1.h" to define 32 and 8
* bit unsigned integer types. If your C compiler does not
* support 32 bit unsigned integers, this code is not
* appropriate.
*
* Caveats:
* SHA-1 is designed to work with messages less than 2^64 bits
* long. Although SHA-1 allows a message digest to be generated
* for messages of any number of bits less than 2^64, this
* implementation only works with messages with a length that is
* a multiple of the size of an 8-bit character.
*
*/ Eastlake & Jones Informational [Page 10] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 #include "sha1.h" /*
* Define the SHA1 circular left shift macro
*/
#define SHA1CircularShift(bits,word) \
(((word) << (bits)) | ((word) >> (32-(bits)))) /* Local Function Prototyptes */
void SHA1PadMessage(SHA1Context *);
void SHA1ProcessMessageBlock(SHA1Context *); /*
* SHA1Reset
*
* Description:
* This function will initialize the SHA1Context in preparation
* for computing a new SHA1 message digest.
*
* Parameters:
* context: [in/out]
* The context to reset.
*
* Returns:
* sha Error Code.
*
*/
int SHA1Reset(SHA1Context *context)
{
if (!context)
{
return shaNull;
} context->Length_Low = 0;
context->Length_High = 0;
context->Message_Block_Index = 0; context->Intermediate_Hash[0] = 0x67452301;
context->Intermediate_Hash[1] = 0xEFCDAB89;
context->Intermediate_Hash[2] = 0x98BADCFE;
context->Intermediate_Hash[3] = 0x10325476;
context->Intermediate_Hash[4] = 0xC3D2E1F0; context->Computed = 0;
context->Corrupted = 0; Eastlake & Jones Informational [Page 11] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 return shaSuccess;
} /*
* SHA1Result
*
* Description:
* This function will return the 160-bit message digest into the
* Message_Digest array provided by the caller.
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 19th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA-1 hash.
* Message_Digest: [out]
* Where the digest is returned.
*
* Returns:
* sha Error Code.
*
*/
int SHA1Result( SHA1Context *context,
uint8_t Message_Digest[SHA1HashSize])
{
int i; if (!context || !Message_Digest)
{
return shaNull;
} if (context->Corrupted)
{
return context->Corrupted;
} if (!context->Computed)
{
SHA1PadMessage(context);
for(i=0; i<64; ++i)
{
/* message may be sensitive, clear it out */
context->Message_Block[i] = 0;
}
context->Length_Low = 0; /* and clear length */
context->Length_High = 0;
context->Computed = 1; Eastlake & Jones Informational [Page 12] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 } for(i = 0; i < SHA1HashSize; ++i)
{
Message_Digest[i] = context->Intermediate_Hash[i>>2]
>> 8 * ( 3 - ( i & 0x03 ) );
} return shaSuccess;
} /*
* SHA1Input
*
* Description:
* This function accepts an array of octets as the next portion
* of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message_array: [in]
* An array of characters representing the next portion of
* the message.
* length: [in]
* The length of the message in message_array
*
* Returns:
* sha Error Code.
*
*/
int SHA1Input( SHA1Context *context,
const uint8_t *message_array,
unsigned length)
{
if (!length)
{
return shaSuccess;
} if (!context || !message_array)
{
return shaNull;
} if (context->Computed)
{
context->Corrupted = shaStateError; Eastlake & Jones Informational [Page 13] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 return shaStateError;
} if (context->Corrupted)
{
return context->Corrupted;
}
while(length-- && !context->Corrupted)
{
context->Message_Block[context->Message_Block_Index++] =
(*message_array & 0xFF); context->Length_Low += 8;
if (context->Length_Low == 0)
{
context->Length_High++;
if (context->Length_High == 0)
{
/* Message is too long */
context->Corrupted = 1;
}
} if (context->Message_Block_Index == 64)
{
SHA1ProcessMessageBlock(context);
} message_array++;
} return shaSuccess;
} /*
* SHA1ProcessMessageBlock
*
* Description:
* This function will process the next 512 bits of the message
* stored in the Message_Block array.
*
* Parameters:
* None.
*
* Returns:
* Nothing.
*
* Comments: Eastlake & Jones Informational [Page 14] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 * Many of the variable names in this code, especially the
* single character names, were used because those were the
* names used in the publication.
*
*
*/
void SHA1ProcessMessageBlock(SHA1Context *context)
{
const uint32_t K[] = { /* Constants defined in SHA-1 */
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};
int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
uint32_t W[80]; /* Word sequence */
uint32_t A, B, C, D, E; /* Word buffers */ /*
* Initialize the first 16 words in the array W
*/
for(t = 0; t < 16; t++)
{
W[t] = context->Message_Block[t * 4] << 24;
W[t] |= context->Message_Block[t * 4 + 1] << 16;
W[t] |= context->Message_Block[t * 4 + 2] << 8;
W[t] |= context->Message_Block[t * 4 + 3];
} for(t = 16; t < 80; t++)
{
W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
} A = context->Intermediate_Hash[0];
B = context->Intermediate_Hash[1];
C = context->Intermediate_Hash[2];
D = context->Intermediate_Hash[3];
E = context->Intermediate_Hash[4]; for(t = 0; t < 20; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | ((~B) & D)) + E + W[t] + K[0];
E = D;
D = C;
C = SHA1CircularShift(30,B); Eastlake & Jones Informational [Page 15] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 B = A;
A = temp;
} for(t = 20; t < 40; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
} for(t = 40; t < 60; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
} for(t = 60; t < 80; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
} context->Intermediate_Hash[0] += A;
context->Intermediate_Hash[1] += B;
context->Intermediate_Hash[2] += C;
context->Intermediate_Hash[3] += D;
context->Intermediate_Hash[4] += E; context->Message_Block_Index = 0;
} /*
* SHA1PadMessage
* Eastlake & Jones Informational [Page 16] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 * Description:
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64
* bits represent the length of the original message. All bits in
* between should be 0. This function will pad the message
* according to those rules by filling the Message_Block array
* accordingly. It will also call the ProcessMessageBlock function
* provided appropriately. When it returns, it can be assumed that
* the message digest has been computed.
*
* Parameters:
* context: [in/out]
* The context to pad
* ProcessMessageBlock: [in]
* The appropriate SHA*ProcessMessageBlock function
* Returns:
* Nothing.
*
*/ void SHA1PadMessage(SHA1Context *context)
{
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (context->Message_Block_Index > 55)
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while(context->Message_Block_Index < 64)
{
context->Message_Block[context->Message_Block_Index++] = 0;
} SHA1ProcessMessageBlock(context); while(context->Message_Block_Index < 56)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
}
else
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while(context->Message_Block_Index < 56)
{ Eastlake & Jones Informational [Page 17] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 context->Message_Block[context->Message_Block_Index++] = 0;
}
} /*
* Store the message length as the last 8 octets
*/
context->Message_Block[56] = context->Length_High >> 24;
context->Message_Block[57] = context->Length_High >> 16;
context->Message_Block[58] = context->Length_High >> 8;
context->Message_Block[59] = context->Length_High;
context->Message_Block[60] = context->Length_Low >> 24;
context->Message_Block[61] = context->Length_Low >> 16;
context->Message_Block[62] = context->Length_Low >> 8;
context->Message_Block[63] = context->Length_Low; SHA1ProcessMessageBlock(context);
} 7.3 Test Driver The following code is a main program test driver to exercise the code
in sha1.c. /*
* sha1test.c
*
* Description:
* This file will exercise the SHA-1 code performing the three
* tests documented in FIPS PUB 180-1 plus one which calls
* SHA1Input with an exact multiple of 512 bits, plus a few
* error test checks.
*
* Portability Issues:
* None.
*
*/ #include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "sha1.h" /*
* Define patterns for testing
*/
#define TEST1 "abc"
#define TEST2a "abcdbcdecdefdefgefghfghighijhi" Eastlake & Jones Informational [Page 18] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 #define TEST2b "jkijkljklmklmnlmnomnopnopq"
#define TEST2 TEST2a TEST2b
#define TEST3 "a"
#define TEST4a "01234567012345670123456701234567"
#define TEST4b "01234567012345670123456701234567"
/* an exact multiple of 512 bits */
#define TEST4 TEST4a TEST4b
char *testarray[4] =
{
TEST1,
TEST2,
TEST3,
TEST4
};
long int repeatcount[4] = { 1, 1, 1000000, 10 };
char *resultarray[4] =
{
"A9 99 3E 36 47 06 81 6A BA 3E 25 71 78 50 C2 6C 9C D0 D8 9D",
"84 98 3E 44 1C 3B D2 6E BA AE 4A A1 F9 51 29 E5 E5 46 70 F1",
"34 AA 97 3C D4 C4 DA A4 F6 1E EB 2B DB AD 27 31 65 34 01 6F",
"DE A3 56 A2 CD DD 90 C7 A7 EC ED C5 EB B5 63 93 4F 46 04 52"
}; int main()
{
SHA1Context sha;
int i, j, err;
uint8_t Message_Digest[20]; /*
* Perform SHA-1 tests
*/
for(j = 0; j < 4; ++j)
{
printf( "\nTest %d: %d, '%s'\n",
j+1,
repeatcount[j],
testarray[j]); err = SHA1Reset(&sha);
if (err)
{
fprintf(stderr, "SHA1Reset Error %d.\n", err );
break; /* out of for j loop */
} for(i = 0; i < repeatcount[j]; ++i)
{ Eastlake & Jones Informational [Page 19] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 err = SHA1Input(&sha,
(const unsigned char *) testarray[j],
strlen(testarray[j]));
if (err)
{
fprintf(stderr, "SHA1Input Error %d.\n", err );
break; /* out of for i loop */
}
} err = SHA1Result(&sha, Message_Digest);
if (err)
{
fprintf(stderr,
"SHA1Result Error %d, could not compute message digest.\n",
err );
}
else
{
printf("\t");
for(i = 0; i < 20 ; ++i)
{
printf("%02X ", Message_Digest[i]);
}
printf("\n");
}
printf("Should match:\n");
printf("\t%s\n", resultarray[j]);
} /* Test some error returns */
err = SHA1Input(&sha,(const unsigned char *) testarray[1], 1);
printf ("\nError %d. Should be %d.\n", err, shaStateError );
err = SHA1Reset(0);
printf ("\nError %d. Should be %d.\n", err, shaNull );
return 0;
} 8. Security Considerations This document is intended to provide convenient open source access by
the Internet community to the United States of America Federal
Information Processing Standard Secure Hash Function SHA-1 [FIPS
180-1]. No independent assertion of the security of this hash
function by the authors for any particular use is intended. Eastlake & Jones Informational [Page 20] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 References [FIPS 180-1] "Secure Hash Standard", United States of American,
National Institute of Science and Technology, Federal
Information Processing Standard (FIPS) 180-1, April
1993. [MD4] "The MD4 Message Digest Algorithm," Advances in
Cryptology - CRYPTO '90 Proceedings, Springer-Verlag,
1991, pp. 303-311. [RFC 1320] Rivest, R., "The MD4 Message-Digest Algorithm", RFC
1320, April 1992. [RFC 1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC
1321, April 1992. [RFC 1750] Eastlake, D., Crocker, S. and J. Schiller, "Randomness
Requirements for Security", RFC 1750, December 1994. Authors' Addresses Donald E. Eastlake, 3rd
Motorola
155 Beaver Street
Milford, MA 01757 USA Phone: +1 508-634-2066 (h)
+1 508-261-5434 (w)
Fax: +1 508-261-4777
EMail: Donald.Eastlake@motorola.com Paul E. Jones
Cisco Systems, Inc.
7025 Kit Creek Road
Research Triangle Park, NC 27709 USA Phone: +1 919 392 6948
EMail: paulej@packetizer.com Eastlake & Jones Informational [Page 21] RFC 3174 US Secure Hash Algorithm 1 (SHA1) September 2001 Full Copyright Statement Copyright (C) The Internet Society (2001). All Rights Reserved. This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English. The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Acknowledgement Funding for the RFC Editor function is currently provided by the
Internet Society. Eastlake & Jones Informational [Page 22]
======================文档信息===========================
版权声明:非商用自由转载-保持署名-注明出处
署名(BY) :testcs_dn(微wx笑)
文章出处:[无知人生。记录点滴](http://blog.csdn.net/testcs_dn)
SHA-1算法c语言实现的更多相关文章
- 【转】位置式、增量式PID算法C语言实现
位置式.增量式PID算法C语言实现 芯片:STM32F107VC 编译器:KEIL4 作者:SY 日期:2017-9-21 15:29:19 概述 PID 算法是一种工控领域常见的控制算法,用于闭环反 ...
- PID算法(C语言)
/************ PID算法(C语言) ************/ #include <stdio.h> #include<math.h> struct _pid { ...
- PageRank算法R语言实现
PageRank算法R语言实现 Google搜索,早已成为我每天必用的工具,无数次惊叹它搜索结果的准确性.同时,我也在做Google的SEO,推广自己的博客.经过几个月尝试,我的博客PR到2了,外链也 ...
- 数据挖掘算法R语言实现之决策树
数据挖掘算法R语言实现之决策树 最近,看到很多朋友问我如何用数据挖掘算法R语言实现之决策树,想要了解这方面的内容如下: > library("party")导入数据包 > ...
- SHA算法:签名串SHA算法Java语言参考(SHAHelper.java)
SHAHelper.java package com.util; /** * @author wangxiangyu * @date:2017年10月16日 上午9:00:47 * 类说明:SHA签名 ...
- 数据结构算法C语言实现(八)--- 3.2栈的应用举例:迷宫求解与表达式求值
一.简介 迷宫求解:类似图的DFS.具体的算法思路可以参考书上的50.51页,不过书上只说了粗略的算法,实现起来还是有很多细节需要注意.大多数只是给了个抽象的名字,甚至参数类型,返回值也没说的很清楚, ...
- 数据结构算法C语言实现(六)---2.4一元多项式的表示及相加
一.简述 利用链表表示稀疏多项式,并基于之前的一些操作(编程实现上还是有所不同的)组合新的操作实现一元多项式的表示及相加. 二.ADT 抽象数据类型一元多项式的定义 ADT Polyomail{ 数据 ...
- 数据结构算法C语言实现(五)---2.3重新定义线性链表及其基本操作
一.简述 ...由于链表在空间的合理利用上和插入.删除时不需要移动等的优点,因此在很多场合下,它是线性表的首选存储结构.然而,它也存在着实现某些基本操作,如求线性表的长度时不如顺序存储结构的缺点:另一 ...
- 数据结构算法C语言实现(二)---2.3线性表的链式表示和实现之单链表
一.简述 [暂无] 二.头文件 #ifndef _2_3_part1_H_ #define _2_3_part1_H_ //2_3_part1.h /** author:zhaoyu email:zh ...
- 回溯算法-C#语言解决八皇后问题的写法与优化
结合问题说方案,首先先说问题: 八皇后问题:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 嗯,这个问题已经被使用各种语言解 ...
随机推荐
- PHP message: PHP Fatal error: require(): Failed opening required
PHP message: PHP Warning: require(/data/wwwroot/blog.sgfoot.com/bootstrap/autoload.php): failed to o ...
- Using Blocks in iOS 4: The Basics
iOS 4 introduces one new feature that will fundamentally change the way you program in general: bloc ...
- Enter Query Mode Search Tricks Using Enter_Query Built-in in Oracle Forms
In this post you will learn how to specify any condition in enter query mode of Oracle Forms. Whenev ...
- [资料分享]GIS+=地理信息+云计算+大数据+容器+物联网+...论文、会议、讲座资料分享
分享地址 http://pan.baidu.com/s/1gesDSB5 部分内容截图 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5 ...
- 七天学会ASP.NET MVC (三)——ASP.Net MVC 数据处理 【转】
http://www.cnblogs.com/powertoolsteam/p/MVC_three.html 第三天我们将学习Asp.Net中数据处理功能,了解数据访问层,EF,以及EF中常用的代码实 ...
- remove-duplicates-from-sorted-array-ii——去除重复
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice? For exampl ...
- hdu3076--ssworld VS DDD(概率dp第三弹,求概率)
ssworld VS DDD Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Effective C++ 35,36,37
35.使公有继承体现 "是一个" 的含义. 共同拥有继承意味着 "是一个".如 class B:public A. 说明类型B的每个对象都是一个类型A的对象, ...
- VueJS样式绑定之内联样式v-bind:style
我们可以在 v-bind:style 直接设置样式: 直接添加样式属性 HTML <!DOCTYPE html> <html> <head> <meta ch ...
- [原创] 浅谈开源项目Android-Universal-Image-Loader(Part 3.1)
最近,总算有时间去做些平时喜欢而没空去做的事情.一直觉得项目中使用的Image Loader适用性不强,昨晚在github随便逛逛,发现一个开源项目Android-Universal-Image-Lo ...