2016集训测试赛(二十六)Problem A: bar

Solution
首先审清题意, 这里要求的是子串而不是子序列...
我们考虑用1表示p, -1表示j. 用sum[i]表示字符串前\(i\)的前缀和. 则我们考虑一个字符串\([L, R]\)有什么要求: \(\forall x \in [L, R]\)满足\(sum[x] \ge sum[L - 1]\).
我们分别从前往后和从后往前求出以每个位置为开头的最长合法子串, 然后扔进树状数组里面查询即可.
至于怎么求以每个位置为开头最长合法子串, 我们考虑用一个单调栈来维护: 从前往后扫每个位置, 假如当前位置的\(sum\)小于栈顶的\(sum\)则弹栈, 并把以栈顶为开头的最长合法子串的末尾设为当前位置的前一位. 弹栈结束后, 插入当前位置即可.
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = (int)1e6, INF = (int)2e9;
int n;
struct record
{
int L, R;
inline int operator <(const record &a) const {return R < a.R;}
}rec[N + 1];
struct segmentTree
{
int mn[N << 2];
inline segmentTree() {memset(mn, 127 ,sizeof(mn));}
void insert(int u, int L, int R, int pos)
{
mn[u] = min(mn[u], pos);
if(L == R) return;
if(pos <= L + R >> 1) insert(u << 1, L, L + R >> 1, pos);
else insert(u << 1 | 1, (L + R >> 1) + 1, R, pos);
}
inline void insert(int pos) {insert(1, 1, n, pos);}
int query(int u, int L, int R, int pos)
{
if(L >= pos) return mn[u];
int mid = L + R >> 1;
if(pos <= mid) return min(query(u << 1, L, L + R >> 1, pos), query(u << 1 | 1, (L + R >> 1) + 1, R, pos));
else return query(u << 1 | 1, (L + R >> 1) + 1, R, pos);
}
inline int query(int pos) {return query(1, 1, n, pos);}
}seg;
struct binaryIndexedTree
{
int mx[N + 1];
inline binaryIndexedTree() {memset(mx, -1, sizeof(mx));}
inline void insert(int pos, int x)
{
for(int i = pos; i <= n; i += i & - i)
mx[i] = max(mx[i], x);
}
inline int query(int pos)
{
int res = -1;
for(int i = pos; i; i -= i & - i) res = max(res, mx[i]);
return res;
}
}BIT;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bar.in", "r", stdin);
freopen("bar.out", "w", stdout);
#endif
scanf("%d\n", &n);
static int a[N + 1];
for (int i = 1; i <= n; ++ i) a[i] = getchar() == 'p' ? 1 : -1;
static int stk[N + 1], sum[N + 2];
int tp = 0; stk[tp ++] = 0;
sum[0] = 0; for (int i = 1; i <= n; ++ i) sum[i] = sum[i - 1] + a[i]; sum[n + 1] = - INF;
static int f[N + 1];
for (int i = 1; i <= n + 1; ++ i)
{
while (tp && sum[i] < sum[stk[tp - 1]]) f[stk[tp - 1] + 1] = i - 1, -- tp;
stk[tp ++] = i;
}
for(int i = 1; i <= n; ++ i) rec[i].L = i, rec[i].R = f[i];
tp = 0; stk[tp ++] = n + 1;
sum[n + 1] = 0; for(int i = n; i; -- i) sum[i] = sum[i + 1] + a[i]; sum[0] = - INF;
for(int i = n; ~ i; -- i)
{
while(tp && sum[i] < sum[stk[tp - 1]]) f[stk[tp - 1] - 1] = i + 1, -- tp;
stk[tp ++] = i;
}
sort(rec, rec + n + 1);
int ans = 0;
/* for(int i = 1, p = 1; i <= n; ++ i)
{
for(; rec[p].R <= i; ++ p) seg.insert(rec[p].L);
int cur = seg.query(f[i]);
if(cur > i) continue;
else ans = max(ans, i - cur + 1);
} */
for(int i = 1, p = 1; i <= n; ++ i)
{
for(; p <= rec[i].R; ++ p) BIT.insert(f[p], p);
int cur = BIT.query(rec[i].L);
if(cur >= rec[i].L) ans = max(ans, cur - rec[i].L + 1);
}
printf("%d\n", ans);
}
2016集训测试赛(二十六)Problem A: bar的更多相关文章
- 2016北京集训测试赛(十六)Problem C: ball
Solution 这是一道好题. 考虑球体的体积是怎么计算的: 我们令\(f_k(r)\)表示\(x\)维单位球的体积, 则 \[ f_k(1) = \int_{-1}^1 f_{k - 1}(\sq ...
- 2016北京集训测试赛(十六)Problem B: river
Solution 这题实际上并不是构造题, 而是一道网络流. 我们考虑题目要求的一条路径应该是什么样子的: 它是一个环, 并且满足每个点有且仅有一条出边, 一条入边, 同时这两条边的权值还必须不一样. ...
- 2016北京集训测试赛(十六)Problem A: 任务安排
Solution 这道题告诉我们, 不能看着数据范围来推测正解的时间复杂度. 事实证明, 只要常数足够小, \(5 \times 10^6\)也是可以跑\(O(n \log n)\)算法的!!! 这道 ...
- 【2016北京集训测试赛(十六)】 River (最大流)
Description Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...
- 2016集训测试赛(十九)Problem C: 无聊的字符串
Solution 傻X题 我的方法是建立后缀后缀树, 然后在DFS序列上直接二分即可. 关键在于如何得到后缀树上每个字符对应的字节点: 我们要在后缀自动机上记录每个点在后缀树上对应的字母. 考虑如何实 ...
- 2016集训测试赛(十九)Problem A: 24点大师
Solution 这到题目有意思. 首先题目描述给我们提供了一种非常管用的模型. 按照题目的方法, 我们可以轻松用暴力解决20+的问题; 关键在于如何构造更大的情况: 我们发现 \[ [(n + n) ...
- 2016集训测试赛(十八)Problem C: 集串雷 既分数规划学习笔记
Solution 分数规划经典题. 话说我怎么老是忘记分数规划怎么做呀... 所以这里就大概写一下分数规划咯: 分数规划解决的是这样一类问题: 有\(a_1, a_2 ... a_n\)和\(b_1, ...
- 2016北京集训测试赛(十)Problem A: azelso
Solution 我们把遇到一个旗子或者是遇到一个敌人称为一个事件. 这一题思路的巧妙之处在于我们要用\(f[i]\)表示从\(i\)这个事件一直走到终点这段路程中, \(i\)到\(i + 1\)这 ...
- 2018.7.31 Noip2018模拟测试赛(十六)
日期: 七月最后一天 总分: 300分 难度: 提高 ~ 省选 得分: 30分(少的可怜) 我太弱了:(题目目录) T1:Mushroom追妹纸 T2:抵制克苏恩 T3:美味 失分分析:(QA ...
随机推荐
- 计算时间复杂度&空间复杂度
1.下面函数的复杂度是: long foo(long x){ if(x<2) return 1; return x*x*foo(x-1); } 解析: 当n>=2时 foo(n)=n^2* ...
- 倍增 - 强制在线的LCA
LCA 描述 给一棵有根树,以及一些询问,每次询问树上的 2 个节点 A.B,求它们的最近公共祖先. !强制在线! 输入 第一行一个整数 N. 接下来 N 个数,第 i 个数 F i 表示 i 的父亲 ...
- csapp读书笔记-并发编程
这是基础,理解不能有偏差 如果线程/进程的逻辑控制流在时间上重叠,那么就是并发的.我们可以将并发看成是一种os内核用来运行多个应用程序的实例,但是并发不仅在内核,在应用程序中的角色也很重要. 在应用级 ...
- Could not connect to Redis at 127.0.0.1:6379: Connection refused
启动redis: redis-server ../redis.conf redis启动成功后 执行命令行redis-cli报:Could not connect to Redis at 127.0. ...
- redis应用场景及实例
Redis在很多方面与其他数据库解决方案不同:它使用内存提供主存储支持,而仅使用硬盘做持久性的存储;它的数据模型非常独特,用的是单线程.另一个大区别在于,你可以在开发环境中使用Redis的功能,但却不 ...
- BZOJ3144 [Hnoi2013]切糕 【最小割】
题目 输入格式 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- ceoi2017 Building Bridges(build)
Building Bridges(build) 题目描述 A wide river has nn pillars of possibly different heights standing out ...
- bzoj 2563 贪心 思想
BZOJ2563阿狸和桃子的游戏 2563: 阿狸和桃子的游戏 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 952 Solved: 682[Su ...
- Jerasure 1.2A 中的 C 函数 tips
C stat函数的用法举例 C语言 fread()与fwrite()函数说明与示例 / C 库函数 - fwrite() C 库函数 - sprintf()
- react 当中重新渲染dom的方法
有个upload 重复上传同名文件的需求,在网上找了很多解决方案都不好使,在react当中解决该问题其实很简单,其实无法上传同名文件 的原因是因为无法触发onChange事件,只需要刷新改dom就可以 ...