Divisibility
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 11151   Accepted: 3993

Description

Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16
17 + 5 + -21 - 15 = -14
17 + 5 - -21 + 15 = 58
17 +
5 - -21 - 15 = 28
17 - 5 + -21 + 15 = 6
17 - 5 + -21 - 15 = -24
17 -
5 - -21 + 15 = 48
17 - 5 - -21 - 15 = 18
We call the sequence of
integers divisible by K if + or - operators can be placed between integers in
the sequence in such way that resulting value is divisible by K. In the above
example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible
by 5.

You are to write a program that will determine divisibility of
sequence of integers.

Input

The first line of the input file contains two
integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a
space.
The second line contains a sequence of N integers separated by
spaces. Each integer is not greater than 10000 by it's absolute value.

Output

Write to the output file the word "Divisible" if given
sequence of integers is divisible by K or "Not divisible" if it's not.

Sample Input

4 7
17 5 -21 15

Sample Output

Divisible
题意:输入n个数,通过添加+和-能否是的结果对k取余为0
思路:智商再次背碾压

首先一个数,不用说,第一个数之前不用加符号就是本身,那么本身直接对K取余,
那么取17的时候有个余数为2
然后来了一个5,
(2 + 5)对7取余为0
(2 - 5)对7取余为4(将取余的负数变正)
那么前2个数有余数0和4
再来一个-21
(0+21)对7取余为0
(0-21)对7取余为0
(4+21)对7取余为4
(4-21)对7取余为4
再来一个-15同样是这样
(0+15)%7 = 1
(0-15)%7 = 6
(4+15)%7 = 5
(4-15)%7 = 3
同理可以找到规律,定义dp[i][j]为前i个数进来余数等于j是不是成立,1为成立,0为不成立
那么如果dp[N][0]为1那么即可以组成一个数对K取余为0
初始化dp为0

然后dp[1][a[1]%k] = 1
for i = 2 to N do
for j = 0 to K do
 if(dp[i - 1][j])
  dp[i][(j + a[i])%k] = 1;
  dp[i][(j - a[i])%k] = 1;
 if end
for end
for end

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int dp[ + ][ + ],a[ + ];
int n,k;
int mod(int x)
{
if(x < )
{
return x + k;
}
else
return x;
}
int main()
{
while(scanf("%d%d", &n, &k) != EOF)
{
for(int i = ; i <= n; i++)
scanf("%d", &a[i]);
memset(dp, , sizeof(dp));
dp[][ mod(a[] % k) ] = ;
for(int i = ; i <= n; i++)
{
for(int j = ; j <= k; j++)
{
if(dp[i - ][j])
{
dp[i][ mod((j + a[i]) % k)] = ;
dp[i][ mod((j - a[i]) % k)] = ;
}
}
}
if(dp[n][])
printf("Divisible\n");
else
printf("Not divisible\n");
} return ;
}

POJ1745Divisibility(01背包思想)的更多相关文章

  1. 01背包 Codeforces Round #267 (Div. 2) C. George and Job

    题目传送门 /* 题意:选择k个m长的区间,使得总和最大 01背包:dp[i][j] 表示在i的位置选或不选[i-m+1, i]这个区间,当它是第j个区间. 01背包思想,状态转移方程:dp[i][j ...

  2. SPOJ RENT 01背包的活用+二分

    这个题目给定N航班的发出时间和结束时间以及价值,要求不冲突时间的最大价值 第一时间想到经典的N方DP,即对航班按发出时间排一下序之后每个i对前面的都扫一遍 时间过不了N有10万,只能想优化了,一开始想 ...

  3. HDU 3446 有贪心思想的01背包

    Proud Merchants Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  4. hdu–2369 Bone Collector II(01背包变形题)

    题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...

  5. DP:Cow Exhibition(POJ 2184)(二维问题转01背包)

        牛的展览会 题目大意:Bessie要选一些牛参加展览,这些牛有两个属性,funness和smartness,现在要你求出怎么选,可以使所有牛的smartness和funness的最大,并且这两 ...

  6. hdu3496 二维01背包

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=3496 //刚看题目以为是简单的二维01背包,but,,有WA点.. 思路:题中说,只能买M ...

  7. hdu 2955 01背包

    http://acm.hdu.edu.cn/showproblem.php?pid=2955 如果认为:1-P是背包的容量,n是物品的个数,sum是所有物品的总价值,条件就是装入背包的物品的体积和不能 ...

  8. Balance(01背包)

    Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9163   Accepted: 5617 Description Gigel ...

  9. HDU -2546饭卡(01背包+贪心)

    这道题有个小小的坎,就是低于5块不能选,大于5块,可以任意选,所以就在初始条件判断一下剩余钱数,然后如果大于5的话,这时候就要用到贪心的思想,只要大于等于5,先找最大的那个,然后剩下的再去用背包去选择 ...

随机推荐

  1. Linux系统批量化安装部署之Cobbler

    说明: Cobbler服务器系统:CentOS 5.10 64位 IP地址:192.168.21.128 需要安装部署的Linux系统: eth0(第一块网卡,用于外网)IP地址段:192.168.2 ...

  2. 认识实验室信息管理系统(LIMS)

    在当今互联网如日中天的大环境下,各种伴随着互联网的产物如p2p,o2o在如火如荼的进行着,吸引了大量的开发人员都涌向了这个行业,所有的技术似乎都在围绕着互联网发展,传统行业软件开发的人气和关注度就相形 ...

  3. 课题:如何培养自己的SEO资源

    课题:如何培养自己的SEO资源 问:做SEO最重要的是什么?[针对性的流量]答:看获取一样东西的门槛.稀缺性,人人可得价值不大外链 内容 流量[正确]针对性的自然流量是用户自愿带来的,价值高,能形成购 ...

  4. Python中的sort()方法使用基础

    一.基本形式 sorted(iterable[, cmp[, key[, reverse]]]) iterable.sort(cmp[, key[, reverse]]) 参数解释: (1)itera ...

  5. INADDR_ANY的确切含义

    INADDR_ANY就是inet_addr("0.0.0.0") 首先,需要明确的是当服务器的监听地址是INADDR_ANY时设置的是服务器的IP地址. 其次,当服务器的监听地址是 ...

  6. PC网站应用接入微信登录

    参考文档: https://open.weixin.qq.com/cgi-bin/showdocument?action=dir_list&t=resource/res_list&ve ...

  7. JS案例之5——移动端触屏滑动

    移动端触屏滑动的效果其实就是图片轮播,在PC的页面上很好实现,绑定click和mouseover等事件来完成.但是在移动设备上,要实现这种轮播的效果,就需要用到核心的touch事件.处理touch事件 ...

  8. 2015年新版C#从入门到精通(第2版)视频教学录像【无水印版】

    <c#从入门到精通(第2版)>以零基础讲解为宗旨,用实例引导读者学习,深入浅出地介绍了c#的相关知识和实战技能.<c#从入门到精通(第2版)>第1篇[c#语言基础]主要讲解c# ...

  9. css 兼容

    color:#0000FF\9; ;/*ie6,ie7,ie8*/ *color:#FFFF00;/*ie7*/ _color:#FF0000;/*ie6*/ body:nth-of-type(1) ...

  10. [CareerCup] 12.3 Test Move Method in a Chess Game 测试象棋游戏中的移动方法

    12.3 We have the following method used in a chess game: boolean canMoveTo( int x, int y). This metho ...