【C语言】汉诺塔问题
之前遇见这个问题,非常费劲地理解了,并写出代码,然后过段时间,再遇见这个问题,又卡住了,如此反反复复两三次,才发现自己对递归的理解依然很肤浅。今天无聊,重温《算法:c语言实现》一书,又遇见了这个问题,心头一紧,担心要费些时间才能写出代码,没想到的是,再理解了书中对递归的定义,蒙住源代码动手写,发现很快就写出来了,甚至都没有费力去模拟整个汉诺塔移动过程,只是根据递归的要领(数学归纳法)分析了一下问题,便得出了一个递归形式,照此写代码,竟然没错。由此也醒悟到,很多时候,用递归写代码并不难,但却常常受困于一种恐惧和自惭的心理而畏葸不前。
下面是源代码,在此之前,阐述一下自己对递归的理解,“对于我们编写的每个递归函数,都必须能够进行有效的归纳证明。”这是《算法:c语言实现》中让我恍然大悟的一句话。这句话的意思是:根据数学归纳的形式,总是能够倒推出完整的递归形式的。数学归纳法的形式非常清晰,其过程通常为先试验初始条件n=1,验证某假设或公理是否成立,再设n=k,假设成立,由n=k推出n=k+1的时候,该假设是否成立。具体分析汉诺塔问题,其最原始的思想是:从某根桩移动N-1个盘子到后边桩上,接着以此类推,移动剩下的第N个盘到某一个桩,再将那N-1个盘移动到第N个盘所在的桩。
#include <stdio.h> #include <stdlib.h> #define ALL 6 enum DIRECT{left = 1, mid = 2, right = 3}; void hanoi(int N, int pos, int dst); void shift(int N, int pos, int direct); int main() { hanoi(4, left, mid); return 0; } void hanoi(int N, int pos, int dst) { if( 0 == N) return ; hanoi(N-1, pos, ALL-dst-pos); shift(N, pos, dst); hanoi(N-1, ALL-dst-pos, dst); } void shift(int N, int pos, int direct) { printf("move %d from pillar %d to pillar %d\n", N, pos, direct); }
众所周知,“递归程序总是可以转换成执行相同计算的非递归性程序。” 递归到非递归的转换,由堆栈来实现,此处不再赘述,感兴趣的可以看看这个网站:http://hawstein.com/posts/3.4.html
【C语言】汉诺塔问题的更多相关文章
- C语言 汉诺塔问题
//凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 汉诺塔是由三根杆子A,B,C组成的.A杆上有n个(n>1)穿孔圆盘,盘的尺寸由下到上依次变小.要求按 ...
- c语言-汉诺塔递归调用
#include<stdio.h> int main() { void hano_tower(int n,char one,char two,char three); int m=0; p ...
- 汇编语言、与C语言、实现--汉诺塔--
题意描述: 用汇编语言实现汉诺塔.只需要显示移盘次序,不必显示所移盘的大小,例如: X>Z,X>Y,Z>Y,X>Z,..... (n阶Hanoi塔问题)假设有三个分别命名为 ...
- 用C语言实现汉诺塔自动递归演示程序
用C语言实现汉诺塔自动递归演示程序 程序实现效果 1.变界面大小依照输入递归数改变. 2.汉诺塔自动移动演示. 3.采用gotoxy实现流畅刷新. 4.保留文字显示递归流程 程序展示及实现 githu ...
- 关于C语言解决汉诺塔(hanoi)问题
C语言解决汉诺塔问题 汉诺塔是典型的递归调用问题: hanoi简介:印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣 ...
- 汉诺塔(河内塔)算法 ----C语言递归实现
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子, 在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺 ...
- C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...
- C语言之算法初步(汉诺塔--递归算法)
个人觉得汉诺塔这个递归算法比电子老鼠的难了一些,不过一旦理解了也还是可以的,其实网上也有很多代码,可以直接参考.记得大一开始时就做过汉诺塔的习题,但是那时代码写得很长很长,也是不理解递归的结果.现在想 ...
- C语言 递归 汉诺塔问题 最大公约数问题
函数不能嵌套定义,但能嵌套调用(在调用一个函数的过程中再调用另一个函数) 函数间接或直接调用自己,称为递归调用 汉诺塔问题 思想:简化为较为简单的问题 n=2 较为复杂的问题,采用数学归纳方法分析 ...
随机推荐
- [BTS] WCF-SAP adapter
=================================== Exception has been thrown by the target of an invocation. (mscor ...
- error at ::0 can't find referenced pointcut解决办法(转载)
原文:http://blog.sina.com.cn/s/blog_9ecb0d9d0101fheg.html Spring中采用annotation的方式实现AOP代理,运行测试代码时抛出以下异常: ...
- PHP的错误报错级别设置原理简析
原理简析 摘录php.ini文件的默认配置(php5.4): ; Common Values: ; E_ALL (Show all errors, warnings and notices inclu ...
- atitit.设计模式(1)--—职责链模式(chain of responsibility)最佳实践O7 日期转换
atitit.设计模式(1)---职责链模式(chain of responsibility)最佳实践O7 日期转换 1. 需求:::日期转换 1 2. 可以选择的模式: 表格模式,责任链模式 1 3 ...
- 每天一个linux命令(7):mv命令
mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files),是Linux系统下常用的命令,经常用来备份文件或者目录. 企业中常用的 [root@ local]# ...
- wicket基础应用(1)--使用wicket对表单中的数据进行验证
作者:lhx1026 出处:http://lhx1026.iteye.com/ wicket基础应用(1)--使用wicket对表单中的数据进行验证 举个例子: 1.有一个Java文件SysCharg ...
- 为PHP函数执行设置超时
如何防止一个函数执行时间过长呢?在PHP里可以用pcntl时钟信号+异常来实现. 代码如下: declare(ticks = 1); function a(){ sleep(10); echo &qu ...
- django 注册、登录及第三方接口程序(4):扩展邮箱注册,登录,微博登录
1.邮箱注册 这里需要扩展User,两种解决办法,1,注册时将email字段内容赋给username,这种瞒天过海型的,另一种就是扩展user,这里介绍django1.5的扩展方法. 1.settin ...
- mysql触发器_begin end 执行多次语句
//多SQL中导出的触发器语句: DROP TRIGGER IF EXISTS `t_trig`; DELIMITER // CREATE TRIGGER `t_trig` BEFORE INSERT ...
- JAVA利用enum结合testng做数据驱动示例
数据驱动是做自动化测试中很重要的一部分,数据源的方案也是百花八门了,比如利用外部文件,直接在@DataProvider中写死等等,我们今天介绍一下利用enum来做数据源,先来看一下enum的写法: p ...