转自:http://blog.chinaunix.net/uid-21977330-id-3754719.html

转自:http://bgutech.blog.163.com/blog/static/18261124320116181119889/
1. 什么是workqueue
       Linux中的Workqueue机制就是为了简化内核线程的创建。通过调用workqueue的接口就能创建内核线程。并且可以根据当前系统CPU的个 数创建线程的数量,使得线程处理的事务能够并行化。workqueue是内核中实现简单而有效的机制,他显然简化了内核daemon的创建,方便了用户的 编程.

工作队列(workqueue)是另外一种将工作推后执行的形式.工作队列可以把工作推后,交由一个内核线程去执行,也就是说,这个下半部分可以在进程上下文中执行。最重要的就是工作队列允许被重新调度甚至是睡眠。
      那么,什么情况下使用工作队列,什么情况下使用tasklet。如果推后执行的任务需要睡眠,那么就选择工作队列。如果推后执行的任务不需要睡眠,那么就 选择tasklet。另外,如果需要用一个可以重新调度的实体来执行你的下半部处理,也应该使用工作队列。它是唯一能在进程上下文运行的下半部实现的机 制,也只有它才可以睡眠。这意味着在需要获得大量的内存时、在需要获取信号量时,在需要执行阻塞式的I/O操作时,它都会非常有用。如果不需要用一个内核 线程来推后执行工作,那么就考虑使用tasklet。

2. 数据结构
     我们把推后执行的任务叫做工作(work),描述它的数据结构为work_struct:

struct work_struct {
atomic_long_t data; /*工作处理函数func的参数*/
#define WORK_STRUCT_PENDING 0 /* T if work item pending execution */
#define WORK_STRUCT_STATIC 1 /* static initializer (debugobjects) */
#define WORK_STRUCT_FLAG_MASK (3UL)
#define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)
struct list_head entry; /*连接工作的指针*/
work_func_t func; /*工作处理函数*/
#ifdef CONFIG_LOCKDEP
struct lockdep_map lockdep_map;
#endif
};

这些工作以队列结构组织成工作队列(workqueue),其数据结构为workqueue_struct:

struct workqueue_struct {
struct cpu_workqueue_struct *cpu_wq;
struct list_head list;
const char *name; /*workqueue name*/
int singlethread; /*是不是单线程 - 单线程我们首选第一个CPU -0表示采用默认的工作者线程event*/
int freezeable; /* Freeze threads during suspend */
int rt;
};

如果是多线程,Linux根据当前系统CPU的个数创建cpu_workqueue_struct 其结构体就是:

truct cpu_workqueue_struct {
spinlock_t lock;/*因为工作者线程需要频繁的处理连接到其上的工作,所以需要枷锁保护*/
struct list_head worklist;
wait_queue_head_t more_work;
struct work_struct *current_work; /*当前的work*/
struct workqueue_struct *wq; /*所属的workqueue*/
struct task_struct *thread; /*任务的上下文*/
} ____cacheline_aligned;

在该结构主要维护了一个任务队列,以及内核线程需要睡眠的等待队列,另外还维护了一个任务上下文,即task_struct。
       三者之间的关系如下:

3. 创建工作
3.1 创建工作queue
a. create_singlethread_workqueue(name)
        该函数的实现机制如下图所示,函数返回一个类型为struct workqueue_struct的指针变量,该指针变量所指向的内存地址在函数内部调用kzalloc动态生成。所以driver在不再使用该work queue的情况下调用:

void destroy_workqueue(struct workqueue_struct *wq)来释放此处的内存地址。

图中的cwq是一per-CPU类型的地址空间。对于create_singlethread_workqueue而言,即使是对于多CPU系统,内核也 只负责创建一个worker_thread内核进程。该内核进程被创建之后,会先定义一个图中的wait节点,然后在一循环体中检查cwq中的 worklist,如果该队列为空,那么就会把wait节点加入到cwq中的more_work中,然后休眠在该等待队列中。

Driver调用queue_work(struct workqueue_struct *wq, struct work_struct *work)向wq中加入工作节点。work会依次加在cwq->worklist所指向的链表中。queue_work向 cwq->worklist中加入一个work节点,同时会调用wake_up来唤醒休眠在cwq->more_work上的 worker_thread进程。wake_up会先调用wait节点上的autoremove_wake_function函数,然后将wait节点从 cwq->more_work中移走。

worker_thread再次被调度,开始处理cwq->worklist中的所有work节点...当所有work节点处理完 毕,worker_thread重新将wait节点加入到cwq->more_work,然后再次休眠在该等待队列中直到Driver调用 queue_work...

b. create_workqueue

相对于create_singlethread_workqueue, create_workqueue同样会分配一个wq的工作队列,但是不同之处在于,对于多CPU系统而言,对每一个CPU,都会为之创建一个per- CPU的cwq结构,对应每一个cwq,都会生成一个新的worker_thread进程。但是当用queue_work向cwq上提交work节点时, 是哪个CPU调用该函数,那么便向该CPU对应的cwq上的worklist上增加work节点。

c.小结
       当用户调用workqueue的初始化接口create_workqueue或者create_singlethread_workqueue对 workqueue队列进行初始化时,内核就开始为用户分配一个workqueue对象,并且将其链到一个全局的workqueue队列中。然后 Linux根据当前CPU的情况,为workqueue对象分配与CPU个数相同的cpu_workqueue_struct对象,每个 cpu_workqueue_struct对象都会存在一条任务队列。紧接着,Linux为每个cpu_workqueue_struct对象分配一个内 核thread,即内核daemon去处理每个队列中的任务。至此,用户调用初始化接口将workqueue初始化完毕,返回workqueue的指针。

workqueue初始化完毕之后,将任务运行的上下文环境构建起来了,但是具体还没有可执行的任务,所以,需要定义具体的work_struct对象。然后将work_struct加入到任务队列中,Linux会唤醒daemon去处理任务。

上述描述的workqueue内核实现原理可以描述如下:

3.2  创建工作
       要使用工作队列,首先要做的是创建一些需要推后完成的工作。可以通过DECLARE_WORK在编译时静态地建该结构:
       DECLARE_WORK(name,void (*func) (void *), void *data);
      这样就会静态地创建一个名为name,待执行函数为func,参数为data的work_struct结构。
      同样,也可以在运行时通过指针创建一个工作:
      INIT_WORK(structwork_struct *work, woid(*func) (void *), void *data);

4. 调度
a. schedule_work

在大多数情况下, 并不需要自己建立工作队列,而是只定义工作, 将工作结构挂接到内核预定义的事件工作队列中调度, 在kernel/workqueue.c中定义了一个静态全局量的工作队列static struct workqueue_struct *keventd_wq;默认的工作者线程叫做events/n,这里n是处理器的编号,每个处理器对应一个线程。比如,单处理器的系统只有events /0这样一个线程。而双处理器的系统就会多一个events/1线程。
       调度工作结构, 将工作结构添加到全局的事件工作队列keventd_wq,调用了queue_work通用模块。对外屏蔽了keventd_wq的接口,用户无需知道此 参数,相当于使用了默认参数。keventd_wq由内核自己维护,创建,销毁。这样work马上就会被调度,一旦其所在的处理器上的工作者线程被唤醒, 它就会被执行。

b. schedule_delayed_work(&work,delay);
      有时候并不希望工作马上就被执行,而是希望它经过一段延迟以后再执行。在这种情况下,同时也可以利用timer来进行延时调度,到期后才由默认的定时器回调函数进行工作注册。延迟delay后,被定时器唤醒,将work添加到工作队列wq中。

工作队列是没有优先级的,基本按照FIFO的方式进行处理。

5. work queue API

1. create_workqueue用于创建一个workqueue队列,为系统中的每个CPU都创建一个内核线程。输入参数:

@name:workqueue的名称

2. create_singlethread_workqueue用于创建workqueue,只创建一个内核线程。输入参数:

@name:workqueue名称

3. destroy_workqueue释放workqueue队列。输入参数:

@ workqueue_struct:需要释放的workqueue队列指针

4. schedule_work调度执行一个具体的任务,执行的任务将会被挂入Linux系统提供的workqueue——keventd_wq输入参数:

@ work_struct:具体任务对象指针

5. schedule_delayed_work延迟一定时间去执行一个具体的任务,功能与schedule_work类似,多了一个延迟时间,输入参数:

@work_struct:具体任务对象指针

@delay:延迟时间

6. queue_work调度执行一个指定workqueue中的任务。输入参数:

@ workqueue_struct:指定的workqueue指针

@work_struct:具体任务对象指针

7. queue_delayed_work延迟调度执行一个指定workqueue中的任务,功能与queue_work类似,输入参数多了一个delay。

6. 示例

  1. //声明
  2. static struct workqueue_struct *mdp_pipe_ctrl_wq; /* mdp mdp pipe ctrl wq */
  3. static struct delayed_work mdp_pipe_ctrl_worker;
  4. mdp_pipe_ctrl_wq = create_singlethread_workqueue("mdp_pipe_ctrl_wq");//创建工作队列
  5. INIT_DELAYED_WORK(&mdp_pipe_ctrl_worker,mdp_pipe_ctrl_workqueue_handler);//delayed_work与task_func绑定。
  6. //处理函数
  7. static void mdp_pipe_ctrl_workqueue_handler(struct work_struct *work)
  8. {
  9. mdp_pipe_ctrl(MDP_MASTER_BLOCK, MDP_BLOCK_POWER_OFF, FALSE);
  10. }
  11. //开始调用工作队列,delay时间到了就执行处理函数。
  12. unsigned long mdp_timer_duration = (HZ/20); /* 50 msecond */
  13. /* send workqueue to turn off mdp power */
  14. queue_delayed_work(mdp_pipe_ctrl_wq,&mdp_pipe_ctrl_worker, mdp_timer_duration);
  15. /* cancel pipe ctrl worker */
  16. cancel_delayed_work(&mdp_pipe_ctrl_worker);
  17. /* for workder can't be cancelled... */
  18. flush_workqueue(mdp_pipe_ctrl_wq);
  19. /* for workder can't be cancelled... */
  20. flush_workqueue(mdp_pipe_ctrl_wq);

在driver 程序中许多很多情况需要设置延后执行的,这样工作队列就很好帮助我们实现。

Linux workqueue工作原理 【转】的更多相关文章

  1. Linux Kbuild工作原理分析(以DVSDK生成PowerVR显卡内核模块为例)

    一.引文 前篇博文<Makefile之Linux内核模块的Makefile写法分析>,介绍了Linux编译生成内核驱动模块的Makefile的写法,但最近在DVSDK下使用Linux2.6 ...

  2. Linux keepalived工作原理

    keepalived简介与工作原理 Keepalived的作用是检测服务器的状态,如果有一台web服务器宕机,或工作出现故障,Keepalived将检测到,并将有故障的服务器从系统中剔除,同时使用其他 ...

  3. linux 文件系统工作原理

    转:<http://linuxperf.com/?p=153> 一.概述 文件系统要解决的一个关键问题是怎样防止掉电或系统崩溃造成数据损坏,在此类意外事件中,导致文件系统损坏的根本原因在于 ...

  4. Linux Shell 工作原理

    Linux系统提供给用户的最重要的系统程序是Shell命令语言解释程序.它不属于内核部分,而是在核心之外,以用户态方式运行.其基本功能是解释并执行用户打入的各种命令,实现用户与Linux核心的接口.系 ...

  5. Linux AWK工作原理

    本篇文章我们主要为大家介绍 AWK 是如何工作的. AWK 工作流程可分为三个部分:1.读输入文件之前执行的代码段(由BEGIN关键字标识).2.主循环执行输入文件的代码段.3. 读输入文件之后的代码 ...

  6. Linux系统开机启动时的工作原理

    Linux系统开机启动时的工作原理也是深入了解Linux系统核心工作原理的一个很好的途径. 启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至 ...

  7. Linux可插拔认证模块(PAM)的配置文件、工作原理与流程

    PAM的配置文件: 我们注意到,配置文件也放在了在应用接口层中,他与PAM API配合使用,从而达到了在应用中灵活插入所需鉴别模块的目的.他的作用主要是为应用选定具体的鉴别模块,模块间的组合以及规定模 ...

  8. Linux内核设计第一周 ——从汇编语言出发理解计算机工作原理

    Linux内核设计第一周 ——从汇编语言出发理解计算机工作原理 作者:宋宸宁(20135315) 一.实验过程 图1 编写songchenning5315.c文件 图2 将c文件汇编成32位机器语言 ...

  9. Linux内核设计第二周——操作系统工作原理

    Linux内核设计第二周 ——操作系统工作原理 作者:宋宸宁(20135315) 一.实验过程 图1 执行效果 从图中可以看出,每执行my_ start_ kernel函数两次或一次,my_ time ...

随机推荐

  1. PaySignKey

    关键词:微信支付 PaySignKey 原文:http://www.cnblogs.com/txw1958/p/weixin-paysignkey.html 微信支付现在分为v2版和v3版 2014年 ...

  2. python_条件、循环语句

    1. python中语句块如何定义: 在Python中,冒号(:)用来标识语句块的开始,块中的每一个语句都是缩进的.当回退到和已经闭合的块一样的缩进量时,就表示当前块已经结束.      默认推荐缩进 ...

  3. Glossary of view transformations

    Glossary of view transformations The following terms are used to define view orientation, i.e. trans ...

  4. 安装ECshop普遍问题的解决方法

    安装ecshop经常会出现以下问题: 1.Strict Standards: Non-static method cls_image::gd_version() should not be calle ...

  5. 用get方式提交请求的url带有中文参数

    又碰到JSP页面中文乱码问题,经过一次encodeURI处理后仍旧是乱码,后来经过两次encodeURI后正常显示中文 以前也碰到过同样的问题,没深究,这次网上搜集了一些资料,记录下来留做备份 ___ ...

  6. Java基础之读文件——使用输入流读取二进制文件(StreamInputFromFile)

    控制台程序,读取Java基础之读文件部分(StreamOutputToFile)写入的50个fibonacci数字. import java.nio.file.*; import java.nio.* ...

  7. MVVM框架思想

    1.MVVM是什么? M:模型 V:视图 VM:视图模型 简单理解:mvc是一个cell面向一个model开发 mvvm是一个cell面向一个viewModel开发, viewModel里面又包含mo ...

  8. JAVA类加载机制详解

    “代码编译的结果从本地机器码转变为字节码,是存储格式发展的一小步,却是变成语言发展的一大步”,这句话出自<深入理解JAVA虚拟机>一书,后面关于jvm的系列文章主要都是参考这本书. JAV ...

  9. Leetcode: Lexicographical Numbers

    Given an integer n, return 1 - n in lexicographical order. For example, given 13, return: [1,10,11,1 ...

  10. TPageControl组件

    TPageControl的功能是创建多个Dialog页,而这些重叠的每一个页Dialog就是通过TTabSheet对象实现的