题目链接:

1537 分解

 问(1+sqrt(2)) ^n  能否分解成 sqrt(m) +sqrt(m-1)的形式 
如果可以 输出 m%1e9+7 否则 输出no
Input
一行,一个数n。(n<=10^18)
Output
一行,如果不存在m输出no,否则输出m%1e9+7
Input示例
2
Output示例
9

题意:

思路:

发现跟奇数偶数有关系,然后就找出递推式,然后就快速幂,然后就A了;

AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=5e5+20;
const int maxn=1e4+220;
const double eps=1e-12; struct matrix
{
LL a[2][2];
}; matrix cal(matrix A,matrix B)
{
matrix C;
for(int i=0;i<2;i++)
{
for(int j=0;j<2;j++)
{
C.a[i][j]=0;
for(int k=0;k<2;k++)
{
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%mod;
}
}
}
return C;
}
matrix pow_mod(LL x)
{
matrix s,base;
base.a[0][0]=base.a[1][1]=base.a[1][0]=1;base.a[0][1]=2;
s.a[0][0]=s.a[1][1]=1;s.a[0][1]=s.a[1][0]=0;
while(x)
{
if(x&1)s=cal(s,base);
base=cal(base,base);
x>>=1;
}
return s;
}
int main()
{
LL n,ans=0;
read(n);
if(n<0)cout<<"no\n";
else if(n==0)cout<<"1\n";
else {
matrix temp=pow_mod(n-1);
if(n%2==0)
{
ans=(temp.a[0][0]+temp.a[0][1])%mod;
ans=ans*ans%mod;
}
else
{
//cout<<temp.a[1][0]<<t
ans=(temp.a[1][0]+temp.a[1][1])%mod;
ans=ans*ans%mod*2%mod;
}
cout<<ans<<endl;
}
return 0;
}

  


51nod-1537 1537 分解(矩阵快速幂+找规律)的更多相关文章

  1. hdu 1005 Number Sequence(矩阵快速幂,找规律,模版更通用)

    题目 第一次做是看了大牛的找规律结果,如下: //显然我看了答案,循环节点是48,但是为什么是48,据说是高手打表出来的 #include<stdio.h> int main() { ], ...

  2. Codeforces 450B div.2 Jzzhu and Sequences 矩阵快速幂or规律

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

  3. 【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)

    [BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减 ...

  4. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  5. A - Number Sequence(矩阵快速幂或者找周期)

    Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * ...

  6. 2017ACM暑期多校联合训练 - Team 2 1006 HDU 6050 Funny Function (找规律 矩阵快速幂)

    题目链接 Problem Description Function Fx,ysatisfies: For given integers N and M,calculate Fm,1 modulo 1e ...

  7. hdu 2604 Queuing dp找规律 然后矩阵快速幂。坑!!

    http://acm.hdu.edu.cn/showproblem.php?pid=2604 这题居然O(9 * L)的dp过不了,TLE,  更重要的是找出规律后,O(n)递推也过不了,TLE,一定 ...

  8. Nowcoder 练习赛 17 C 操作数 ( k次前缀和、矩阵快速幂打表找规律、组合数 )

    题目链接 题意 :  给定长度为n的数组a,定义一次操作为: 1. 算出长度为n的数组s,使得si= (a[1] + a[2] + ... + a[i]) mod 1,000,000,007: 2. ...

  9. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

随机推荐

  1. spring mvc 框架搭建及详解

    现 在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了.不 ...

  2. 为阿里云存储开发的PHP PEAR 包:Services_Aliyun_OSS

    阿里云开放存储服务 OSS:用于存储图片.apk等静态资源,使用阿里云带宽,不占用开发者服务器带宽. 阿里云官方PHP SDK: http://aliyun.com/product/oss/#help ...

  3. Erlang进程间消息接收超时设定

        Erlang消息接收函数,一般都会设计成尾递归调用自己的模式.但是这样的模式,如果没有消息则会无限的等待下去,所以为了不无限等待,这里可以加个超时设定,例如: flush() -> re ...

  4. UIMenuController的使用

    1, 基本使用 以对一个UILabel长按弹出菜单为例 子类化UILabel 因为需要覆盖这几个方法:- (BOOL)canBecomeFirstResponder; 返回YES 同时需要在每次UI元 ...

  5. VS 2013 Preview 自定义 SharePoint 2013 列表 之 两个Bug

    SharePoint 2013 已RTM了,对于程序员来说又要了解新功能了,同时 VS 2013 也将要 RTM了,两者同时应用定会有不新功能,我们先从 自定义 列表开始. SharePoint 20 ...

  6. Eclipse反编译工具Jad及插件JadClipse配置

    Jad是一个Java的一个反编译工具,是用命令行执行,和通常JDK自带的java,javac命令是一样的.不过因为是控制台运行,所以用起来不太方便.不过幸好有一个eclipse的插件JadClipse ...

  7. javascript宿主对象之window.frames

    window.frames属性是当前页面所有框架的集合.要注意的事,这里并没有frame和iframe做出区分.而且,无论页面存不存在框架,window.frames属性总是存在的,并总是指向wind ...

  8. JS写返回上一级

    应产品需求,自己的网站上要有返回上一级的需求,几经周折,做个小总结. (1): $("XX").on("click",function(){      wind ...

  9. JavaScript的一些小技巧(转)

    本文是一篇翻译文章,原文信息如下: 原文:45 Useful JavaScript Tips, Tricks and Best Practices 作者:Saad Mousliki JavaScrip ...

  10. Atitit.电脑图片与拍摄图片的分别

    Atitit.电脑图片与拍摄图片的分别 1. Extname都是jpg的..1 1.1. 数码照片的Exif信息, 1 1.2. 是否有人脸1 1.3. 是否skin图1 1.4. 是否大面积色素单一 ...