Factorization Machine Model

如果仅考虑两个样本间的交互, 则factorization machine的公式为:

$\hat{y}(\mathbf{x}):=w_0 + \sum_{i=1}^nw_ix_i + \sum_{i=1}^n\sum_{j=i+1}^n<\mathbf{v}_i, \mathbf{v}_j>x_ix_j$

其中的参数为

$w_0 \in \mathcal{R}, \mathbf{w}\in\mathbb{R}^n,\mathbf{V}\in\mathbb{R}^{n\times k}\tag{1}$

$\mathbf{v_i}$是样本$i$的向量表示, 维度为$k$, 两个向量的点积越大, 表示这两个样本越相似.

2路FM(2-way FM)捕获了样本自身以及样本之间的交互, 详解如下

$w_0$是全局偏置

$w_i$是第$i$个样本的强度

$\hat{w}_{i,j}:=<\mathbf{v}_i, \mathbf{v}_j>$代表第$i$个样本和第$j$个样本的交互. 与其为每个样本对都设置一个参数$w_{i,j}$, FM模型将其分解成两个向量之间的乘积.

通常来说, 对于任一正定矩阵$\mathbf{W}$,  只要$k$充分大, 都可以找到一个矩阵$\mathbf{V}$使得 $\mathbf{W}= \mathbf{V} \cdot \mathbf{V}^t$. 然而如果数据比较稀疏, 因为数据量不够估计复杂的交互矩阵$\mathbf{W}$, 通常需要选择小一点的$k$. 而FM把这种交互分解后, 会学习的更好, 因为FM通过分解来打破了交互之间的依赖性, 减少了参数. 下图是一个用于预测用户对电影打分的数据集:

易知$(1)$式的计算复杂度为$\mathit{O}(kn^2)$, 但是其可以做如下化简:

$\sum_{i=1}^n\sum_{j=i+1}^n<\mathbf{v}_i, \mathbf{v}_j>x_ix_j$

$=\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n<\mathbf{v}_i,\mathbf{v}_j>x_ix_j - \frac{1}{2}\sum_{i=1^n}<\mathbf{v}_i, \mathbf{v}_j>x_ix_j$

$=\frac{1}{2}\left(\sum_{i=1}^n\sum_{j=1}^n\sum_{f=1}^kv_{i, f}v_{j, f}x_ix_j - \sum_{i=1}^n\sum_{f=1}^kv_{i,f}v_{i,f}x_ix_i\right)$

$=\frac{1}{2}\sum_{f=1}^k\left(\left(\sum_{i=1}^nv_{i, f}x_i\right)\left(\sum_{j=1}^nv_{j,f}x_j\right) - \sum_{i=1}^nv_{i, f}^2x_i^2\right)$

$=\frac{1}{2}\sum_{f=1}^k\left(\left(\sum_{i=1}^nv_{i, f}x_i\right)^2 -\sum_{i=1}^nv_{i, f}^2x_i^2\right)$

根据上述化简, $(1)$式的计算复杂度可以变为$\mathit{O}(kn)$

FM可以用作回归, 二分类以及排序. 为了防止过拟合, 最好添加$\mathcal{L}_2$正则化项.

  • 回归  直接使用MSE作为Loss
  • 二分类 使用hinge loss或者logit loss.
  • 排序 对样本对$(\mathbf{x}^{(a)}, \mathbf{x}^{(b)})$进行优化, 使用pairwise的分类loss

模型学习

FM的参数$(w_o, \mathbf{w}, \mathbf{V})$可以通过梯度下降方法来学习, 比如SGD.

$\frac{\partial}{\partial \theta}=\begin{cases} 1 & if \hspace{2 pt}\theta \hspace{2 pt}is \hspace{2 pt}w_0 \\ x_i, & if \hspace{2 pt}\theta \hspace{2 pt}is \hspace{2 pt}w_i \\ x_i\sum_{j=1}^nv_{j, f}x_j - v_{i, f}x_i^2, & if \hspace{2 pt}\theta \hspace{2 pt}is\hspace{2 pt} v_{i, f}\end{cases}$

其中$\sum_{j=1}^nv_{j, f}x_j$独立于$i$, 可以提前计算. 所以所有的梯度都可以在$\mathit{O}(1)$时间内计算得到, 而每个样本的参数更新可以在$\mathit{O}(kn)$内完成.

2路FM可以扩展到k路:

$\hat{y}(x):=w_0 + \sum_{i=1}^nw_ix_i + \sum_{l=2}^d\sum_{i_1=1}^n\dots\sum_{i_l=i_{l-1}+1}^n\left(\prod_{j=1}^lx_{i_{j}}\right) \left(\sum_{f=1}^{k_l}\prod_{j=1}^lv_{i_j, f}^{(l)}\right)$

参考文献:

[1]. Factorization Machines. Steffen Rendle. ICDM 2010.

[2]. From Matrix Factorization to Factorization Machine.

Factorization Machine的更多相关文章

  1. Factorization Machine因子分解机

    隐因子分解机Factorization Machine[http://www. w2bc. com/article/113916] https://my.oschina.net/keyven/blog ...

  2. 3.1、Factorization Machine模型

    Factorization Machine模型 在Logistics Regression算法的模型中使用的是特征的线性组合,最终得到的分隔超平面属于线性模型,其只能处理线性可分的二分类问题,现实生活 ...

  3. Factorization Machine算法

    参考: http://stackbox.cn/2018-12-factorization-machine/ https://baijiahao.baidu.com/s?id=1641085157432 ...

  4. AI Factorization Machine(FM)算法

    FM算法 参考链接: https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf

  5. 3.2、Factorization Machine实践

    1.在上一篇博客中我们构建度为二的因子分解机模型,这篇博客对这个模型进行实践 下图为准备的数据集: 完整代码为: # -*- coding: UTF-8 -*- # date:2018/6/6 # U ...

  6. FM算法

    1.FM背景 在计算广告中,CTR预估(click-through rate)是非常重要的一个环节,因为DSP后面的出价要依赖于CTR预估的结果.在前面的相关博文中,我们已经提到了CTR中相关特征工程 ...

  7. COS访谈第十八期:陈天奇

    COS访谈第十八期:陈天奇 [COS编辑部按] 受访者:陈天奇      采访者:何通   编辑:王小宁 简介:陈天奇,华盛顿大学计算机系博士生,研究方向为大规模机器学习.他曾获得KDD CUP 20 ...

  8. ML学习分享系列(2)_计算广告小窥[中]

    原作:面包包包包包包 改动:寒小阳 && 龙心尘 时间:2016年2月 出处:http://blog.csdn.net/Breada/article/details/50697030 ...

  9. AFM论文精读

    深度学习在推荐系统的应用(二)中AFM的简单回顾 AFM模型(Attentional Factorization Machine) 模型原始论文 Attentional Factorization M ...

随机推荐

  1. [JS13] ActivetX

    <HTML> <head> <title>JavaScript Unleashed</title> <script type="text ...

  2. 无线客户端框架设计(3):基类的设计(iOS篇)

    本文代码:YoungHeart-Chapter-03.zip 没有基类的App都不是好App. 因为iOS使用的是mvc模式的开发模式,所以,业务逻辑基本都在每个页面相应的ViewController ...

  3. Nodejs学习笔记(十一)--- 数据采集器示例(request和cheerio)

    目录 写在之前 示例 示例要求 采集器 加入代理 请求https 写在之后... 写在之前 很多人都有做数据采集的需求,用不同的语言,不同的方式都能实现,我以前也用C#写过,主要还是发送各类请求和正则 ...

  4. ASP.net知识点

    2 .列举ASP.NET 页面之间传递值的几种方式. 答: (1)QueryString是一种非常简单的传值方式,他可以将传送的值显示在浏览器的地址栏中. 如果是传递一个或多个安全性要求不高或是结构简 ...

  5. 搭建wamp环境,数据库基础知识

    服务器管理软件php Apache.net IISjava Tomcat 服务器管理软件起到的作用:管理服务器工作,具体的工作如下:1.静态页面用户将请求发送到服务器,服务器中的服务器管理软件将请求发 ...

  6. .NET Remoting学习笔记(三)信道

    目录 .NET Remoting学习笔记(一)概念 .NET Remoting学习笔记(二)激活方式 .NET Remoting学习笔记(三)信道 参考:♂风车车.Net .NET Framework ...

  7. 文件上传小技巧/后端处理【以php示例】

    引语:在上一篇文章中说到,在页面中可以用隐藏的方式让你的上传页面看起来漂亮.但是这对于性能来说,并没有什么卵用,那么在后台的处理中,难道就没有一些处理技巧么?所谓后台的技巧,应该要包括上传得快一点,上 ...

  8. error C3861: “LOG4CPLUS_DEBUG”: 找不到标识

    头文件#include <log4cplus/loggingmacros.h>解决问题

  9. iOS---内存优化

    在用非ARC模式编写iOS程序的时候,造成程序内存泄露在所难免,后期我们一般会进行内存优化.自己比较常用的内存优化方法有两种 1.Analyze,静态分析内存泄露的方法.很简单,在Xcode菜单栏中点 ...

  10. 一些java面试题

    1.SQL中的having子句用来干啥的? 答:having子句的功能是进行分组(GROUP BY)后的过滤 如:select id,avg(score) from  表 group by 学号 ha ...