LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串。
一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时候要枚举,这样时间复杂度是不可行的。
然后我就想降维度了,只能线性DP,dp[i]表示子串[0,i]的答案。这样可以从i-1转移到i,str[i]单独作一段或者str[i]能和前面的组成回文串,方程如下:
dp[i]=min(dp[i-1]+1,dp[j-1]+1) (子串[j,i]是回文串)
现在问题是怎么快速判断一个字符串的任意子串是否是回文串。
我想该不会要用字符串的一些数据结构或算法吧。。忽然又想到区间DP,这个问题是可以用区间DP解决的:
dp2[i][j]表示子串[i,j]是否是回文串
而转移只要一步即可:
dp2[i][j] = (str[i]==str[j] && dp2[i+1][j-1])
因此这就可以在O(strlen2)预处理完并在O(1)时间复杂度下判断任意区间是否是回文串。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char str[];
bool palindrome[][];
int d[];
int main(){
int t;
scanf("%d",&t);
for(int cse=; cse<=t; ++cse){
scanf("%s",str);
int n=strlen(str); for(int i=; i<n; ++i){
for(int j=; j<n; ++j){
palindrome[i][j]=(i>=j);
}
}
for(int len=; len<=n; ++len){
for(int i=; i+len<=n; ++i){
if(str[i]==str[i+len-] && palindrome[i+][i+len-]) palindrome[i][i+len-]=;
}
} d[]=;
for(int i=; i<n; ++i){
if(palindrome[][i]){
d[i]=;
continue;
}
d[i]=d[i-]+;
for(int j=i-; j>=; --j){
if(palindrome[j][i]) d[i]=min(d[i],d[j-]+);
}
}
printf("Case %d: %d\n",cse,d[n-]);
}
return ;
}
LightOJ1044 Palindrome Partitioning(区间DP+线性DP)的更多相关文章
- uva 11584 Partitioning by Palindromes 线性dp
// uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串 ...
- Atcoder Yet Another Palindrome Partitioning(状压dp)
Atcoder Yet Another Palindrome Partitioning 思路: 一个字符串满足条件的情况是奇数字母个数小于等于1,也就是异或起来是1<<j(0<=j& ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- [CodeForces - 1272D] Remove One Element 【线性dp】
[CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- 1044 - Palindrome Partitioning(区间DP)
题目大意: 给你一个字符串,问这个字符串最少有多少个回文串. 区间DP直接搞 #include<cstdio> #include<cstring> #include&l ...
- Lightoj 1044 - Palindrome Partitioning (DP)
题目链接: Lightoj 1044 - Palindrome Partitioning 题目描述: 给一个字符串,问至少分割多少次?分割出来的子串都是回文串. 解题思路: 先把给定串的所有子串是不 ...
- 132. Palindrome Partitioning II (String; DP)
Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...
- 131. Palindrome Partitioning (Back-Track, DP)
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
随机推荐
- js矩阵菜单或3D立体预览图片效果
js矩阵菜单或3D立体预览图片效果 下载地址: http://files.cnblogs.com/elves/js%E7%9F%A9%E9%98%B5%E8%8F%9C%E5%8D%95%E6%88% ...
- [Effective JavaScript 笔记]第18条:理解函数调用、方法调用及构造函数调用之间的不同
面向对象编程中,函数.方法.类的构造函数是三种不同的概念. JS中,它们只是单个构造对象的三种不同的使用模式. 三种不同的使用模式 函数调用 function hello(username){ ret ...
- PHP 遍历目录
$dir = $_SERVER['DOCUMENT_ROOT'].'/test'; //var_dump($dir);exit; function my_scandir($dir) { $files ...
- Bulb Switcher
There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off every ...
- ecshop设置一个子类对应多个父类并指定跳转url的修改方法
这是一篇记录在日记里面的技术文档,其实是对ecshop的二次开发.主要作用是将一个子类对应多个父类,并指定条跳转url的功能.ecshop是一款在线购物网站,感兴趣的可以下载源码看看.我们看看具体是怎 ...
- Sybase IQ导出文件的几种方式
IQ有四种方法,将表的数据导出为文本文件:1.重定向 SELECT * FROM TABLE1 ># D:MYDATATABLE1.TXT -- 文件生成在执行语句的客户端上 2.通过选项导出 ...
- poj 1625 (AC自动机好模版,大数好模版)
题目 给n个字母,构成长度为m的串,总共有n^m种.给p个字符串,问n^m种字符串中不包含(不是子串)这p个字符串的个数. 将p个不能包含的字符串建立AC自动机,每个结点用val值来标记以当前节点为后 ...
- ubuntu下Tomcat7的安装和配置
和前几个软件一样,Tomcat 同样是由JAVA开发的,所以,在安装前一定要装好JDK. 大家可以到 http://tomcat.apache.org/download-70.cgi 下载最新的Tom ...
- ubuntu 13.10 amd64安装ia32-libs
很多软件只有32位的,有的依赖32位库还挺严重的:从ubuntu 13.10已经废弃了ia32-libs,但可以使用多架构,安装软件或包apt-get install program:i386.有的还 ...
- 【python-mysql】在ubuntu下安装python-mysql环境
1.先安装mysql sudo apt-get install mysql-server apt-get isntall mysql-client sudo apt-get install libmy ...