设$f[i][j]$表示$hp$为$i$,在$j$点的概率,$d[i]$表示$i$的度数,$w[i]$表示经过$i$点要扣掉的血量。

对于$j$到$k$这条边,$f[i-w[k]][k]+=\frac{f[i][j]}{d[j]}$。

若$w[k]>0$,则直接将贡献加给$f[i-w[k]][k]$,否则加入转移矩阵$G$。

对于当前层,有$G\times f'[i]=f[i]$,即$f'[i]=G^{-1}\times f[i]$,对$G$求出逆矩阵即可。

时间复杂度$O(n^3+n^2hp)$。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=152,M=10010;
int n,m,hp,i,j,k,w[N],g[N],v[M],nxt[M],ed;
double t,a[N][N],b[N][N],d[N],f[M][N],c[N],ans;
void add(int x,int y){d[x]+=1;v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
int main(){
scanf("%d%d%d",&n,&m,&hp);
for(i=1;i<=n;i++)scanf("%d",&w[i]);
while(m--){
scanf("%d%d",&i,&j),add(i,j);
if(i!=j)add(j,i);
}
for(i=1;i<=n;i++)d[i]=1.0/d[i];
for(i=1;i<=n;i++){
if(i<n)for(j=g[i];j;j=nxt[j])if(!w[v[j]])a[v[j]][i]-=d[i];
a[i][i]+=1,b[i][i]=1;
}
for(i=1;i<=n;i++){
for(k=i,j=i+1;j<=n;j++)if(fabs(a[j][i])>fabs(a[k][i]))k=j;
if(k!=i)for(j=1;j<=n;j++)swap(a[i][j],a[k][j]),swap(b[i][j],b[k][j]);
for(j=i+1;j<=n;j++)for(t=a[j][i]/a[i][i],k=1;k<=n;k++)a[j][k]-=a[i][k]*t,b[j][k]-=b[i][k]*t;
}
for(i=n;i;i--){
for(j=n;j>i;j--)for(t=a[i][j],k=1;k<=n;k++)a[i][k]-=a[j][k]*t,b[i][k]-=b[j][k]*t;
for(t=a[i][i],j=1;j<=n;j++)a[i][j]/=t,b[i][j]/=t;
}
f[hp][1]=1;
for(i=hp;i;i--){
for(j=1;j<=n;j++)for(c[j]=0,k=1;k<=n;k++)c[j]+=b[j][k]*f[i][k];
ans+=c[n],c[n]=0;
for(j=1;j<n;j++)for(k=g[j];k;k=nxt[k])if(w[v[k]]&&i>w[v[k]])f[i-w[v[k]]][v[k]]+=c[j]*d[j];
}
return printf("%.8f",ans),0;
}

  

BZOJ3640 : JC的小苹果的更多相关文章

  1. bzoj千题计划291:bzoj3640: JC的小苹果

    http://www.lydsy.com/JudgeOnline/problem.php?id=3640 dp[i][j] 表示i滴血到达j的概率 dp[i][j] = Σ dp[i+val[i]][ ...

  2. 【BZOJ3640】JC的小苹果 概率DP+高斯消元

    [BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但 ...

  3. BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]

    3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...

  4. 【BZOJ 3640】JC的小苹果 (高斯消元,概率DP)

    JC的小苹果 Submit: 432  Solved: 159 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话 ...

  5. BZOJ 3640: JC的小苹果

    3640: JC的小苹果 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 425  Solved: 155[Submit][Status][Discus ...

  6. 3640: JC的小苹果 - BZOJ

    让我们继续JC和DZY的故事.“你是我的小丫小苹果,怎么爱你都不嫌多!”“点亮我生命的火,火火火火火!”话说JC历经艰辛来到了城市B,但是由于他的疏忽DZY偷走了他的小苹果!没有小苹果怎么听歌!他发现 ...

  7. ●BZOJ 3640 JC的小苹果

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3640题解: 期望dp,高斯消元 设dp[i][h]在i位置且血量为h这个状态的期望经过次数. ...

  8. BZOJ 3640 JC的小苹果(逆矩阵)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3640 题意:给出一个无向图,从1走到n.开始是血量H,从u到达v时血量减少a[v] ...

  9. 【BZOJ】3640: JC的小苹果

    题解 我们考虑列出期望方程组,\(dp[i][j]\)表示在第\(i\)个点血量为\(j\)的时候到达\(N\)点的概率,所有的\(dp[N][j]\)都是1,所有\(j < 0\)都是0 答案 ...

随机推荐

  1. ubuntu硬盘安装卡在探测文件系统

    在硬盘安装ubuntu的时候,会出现这样的问题:安装程序一直卡在正在探测文件系统就不动了.解决的方法很简单.在安装之前要在终端输入sudo空格umount空格 -l空格 /isodevice 不能少一 ...

  2. windows下的C/C++精确计时

    由于我要测试线性筛法的速度,用上了C/C++精确计时.此时传统的clock()方法不够用了,我们需要另一种测量的办法,即CPUTicks/CPUFreq.如何实现呢? #include <win ...

  3. 什么是mixin

    转自:http://guangboo.org/2013/01/28/python-mixin-programming http://en.wikipedia.org/wiki/Mixin http:/ ...

  4. 【Network】一张图看懂 Reactor 与 Proactor 模型的区别

    首先来看看Reactor模式,Reactor模式应用于同步I/O的场景.我们以读操作为例来看看Reactor中的具体步骤:读取操作:1. 应用程序注册读就需事件和相关联的事件处理器2. 事件分离器等待 ...

  5. 深入了解PooledConnectionFactory CachingConnectionFactory Sin

    深入理解PooledConnectionFactory CachingConnectionFactory SingleConnectionFactory PooledConnectionFactory ...

  6. 《转》Visual Studio 2010 终极定制安装精简方法

    打开VS2010安装目录下的 Setup 文件夹,找到 baseline.dat 文件和 vs_setup.pdi 文件还有一个 locdata.ini 文件,是对应的. 这些都是文本文件,用记事本就 ...

  7. Android Studio项目整合PullToRefresh的问题记录

    PullToRefresh下拉刷新在App中应用非常频繁,然而PullToRefresh是在ADT下开发完成的.如果要将其整合到Android Studio目录下的话颇费周折.前面的文章“Androi ...

  8. C++ 通过WIN32 API 获取逻辑磁盘详细信息

    众所周知,在微软的操作系统下编写应用程序,最主要的还是通过windows所提供的api函数来实现各种操作的,这些函数通常是可以直接使用的,只要包含windows.h这个头文件, 下载源文件 今天我们主 ...

  9. apple配置WIFI热点

    打开AirPort打开设置偏好-共享,找到WIFI相关

  10. MVC准备前基础知识

    一.自动属性C#自动属性可以避免原来这样我们手工声明一个私有成员变量以及编写get/set逻辑public class Product{ public int Id { get; set; } pub ...