HDU3037 Saving Beans(Lucas定理+乘法逆元)
题目大概问小于等于m个的物品放到n个地方有几种方法。
即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m。
这个方程的非负整数解个数是个经典问题,可以+1转化正整数解的个数用插板法解决:$C_{y+n-1}^{n-1}=C_{y+n-1}^y$。
而0<=y<=m,最后的结果就是——
$$\sum_{i=0}^m C_{i+n-1}^i$$
$$C_{n-1}^0+C_{n}^1+C_{n+1}^2+\dots+C_{n-1+m}^m$$
$$C_{n}^0+C_{n}^1+C_{n+1}^2+\dots+C_{n-1+m}^m$$
$$C_{n+1}^1+C_{n+1}^2+\dots+C_{n-1+m}^m\ \tag{$C_{n+1}^1=C_{n}^0+C_{n}^1$}$$
$$C_{n+2}^2+\dots+C_{n-1+m}^m\ \tag{$C_{n+2}^2=C_{n+1}^1+C_{n+1}^2$}$$
$$\vdots$$
$$C_{n+m}^m$$
于是就推算出结果是$C_{n+m}^m$。那么就是计算$C_{n+m}^m\ mod \ p$,其中1<=n,m<=1000000000,1<p<100000且p为质数。
这时就是用Lucas定理来计算这种大组合数的模:$Lucas(n,m)\equiv C_{n\%p}^{m\%p}\times Lucas(n/p,m/p)\pmod p$。
另外计算组合数时,利用模p下的乘法逆元,$C_n^m\equiv\frac {n!}{(n-m)!m!}\equiv n!\times((n-m)!m!)^{-1} \pmod p$
而计算逆元没必要用扩展欧几里得算法,因为p是质数,利用费马小定理可以推出n在模p下的乘法逆元为$n^{p-2}\ mod\ p$。
#include<cstdio>
#include<cstring>
using namespace std;
long long ine(long long n,long long p){
long long res=,m=p-;
while(m){
if(m&) res=res*n%p;
n=n*n%p;
m>>=;
}
return res;
}
long long fact[]={};
long long lucas(long long n,long long m,long long p){
long long res=;
while(n&&m){
long long a=n%p,b=m%p;
if(a<b) return ;
res=res*fact[a]*ine(fact[b]*fact[a-b]%p,p)%p;
n/=p; m/=p;
}
return res;
}
int main(){
long long n,m,p;
int t;
scanf("%d",&t);
while(t--){
scanf("%lld%lld%lld",&n,&m,&p);
for(int i=; i<p; ++i) fact[i]=fact[i-]*i%p;
printf("%lld\n",lucas(n+m,m,p));
}
return ;
}
HDU3037 Saving Beans(Lucas定理+乘法逆元)的更多相关文章
- Hdu 3037 Saving Beans(Lucus定理+乘法逆元)
Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...
- bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)
Description Input Output Sample Input 2 1 10 13 3 Sample Output 12 Source 看到t很小,想到用容斥原理,推一下发现n种数中选m个 ...
- hdu 3037 Saving Beans Lucas定理
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- 【BZOJ】2982: combination(lucas定理+乘法逆元)
http://www.lydsy.com/JudgeOnline/problem.php?id=2982 少加了特判n<m return 0就wa了QAQ lucas定理:C(n, m)%p=( ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- HDU 3037 Saving Beans(Lucas定理的直接应用)
解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...
- hdu3037 Saving Beans(Lucas定理)
hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...
- hihocoder #1698 假期计划 (排列组合+费马小定理+乘法逆元)
Description 小Ho未来有一个为期N天的假期,他计划在假期中看A部电影,刷B道编程题.为了劳逸结合,他决定先拿出若干天看电影,再拿出若干天刷题,最后再留若干天看电影.(若干代指大于0) 每 ...
- [HDU3037]Saving Beans,插板法+lucas定理
[基本解题思路] 将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元 ...
随机推荐
- MVC中html转义问题(直接输出html的方法)
MVC中如果用@string(string是包含html代码的字符串)形式输出字符串,那么对应的html标签会自动转义,如果想直接输出html可用以下方法: @(new HtmlString( &qu ...
- Android Bitmap 全面解析(四)图片处理效果对比 ...
对比对象: UIL Volley 官方教程中的方法(此系列教程一里介绍的,ImageLoader的处理方法和官方的差不多) -------------------------------------- ...
- 变色龙安装程序 Chameleon Install 2.2 svn 2281发布
变色龙安装程序 Chameleon Install 2.2 svn 2281发布 1.更好的支持10.9 Mavericks2.更新ATi.nVidia显卡支持列表3.添加新的 CPU Model I ...
- [COJ0988]WZJ的数据结构(负十二)
[COJ0988]WZJ的数据结构(负十二) 试题描述 输入 见题目,注意本题不能用文件输入输出 输出 见题目,注意本题不能用文件输入输出 输入示例 输出示例 数据规模及约定 1≤N≤1500,M≤N ...
- hMailServer+foxmail配置局域网邮件服务器
1.下载hMailServer并安装,请参考以下网址 https://www.hmailserver.org 2.安装foxmail,官网如下: http://www.foxmail.com/ 3.配 ...
- yum 配置
1.配置yum本地源 # mount /dev/cdrom /mnt/ # vim /etc/yum.repos.d/rhel-source.repo 1 [rhel-source] 2 name=R ...
- 查看现有运行的linux服务器有多少内存条
i161 admin # ssh 192.168.5.209 dmidecode | grep 'Ending Address' -B1 -A2 Starting Address: 0x0000 ...
- 完整java开发中JDBC连接数据库代码和步骤 JDBC连接数据库
JDBC连接数据库 •创建一个以JDBC连接数据库的程序,包含7个步骤: 1.加载JDBC驱动程序: 在连接数据库之前,首先要加载想要连接的数据库的驱动到JVM(Java虚拟机), 这通过java.l ...
- 【leetcode】String to Integer (atoi)
String to Integer (atoi) Implement atoi to convert a string to an integer. Hint: Carefully consider ...
- 1.2 中国象棋将帅问题进一步讨论与扩展:如何用1个变量实现N重循环?[chinese chess]
[题目] 假设在中国象棋中只剩下将帅两个棋子,国人都知道基本规则:将帅不能出九宫格,只能上下左右移动,不能斜向移动,同时将帅不能照面.问在这样条件下,所有可能将帅位置.要求在代码中只能使用一个字节存储 ...