数据流的中位数


class MedianFinder {
private Queue<Integer> maxHeap = new PriorityQueue(new Comparator<Integer>(){
@Override
public int compare(Integer i1, Integer i2){
return Integer.compare(i2, i1);
}
});
private Queue<Integer> minHeap = new PriorityQueue(new Comparator<Integer>(){
@Override
public int compare(Integer i1, Integer i2){
return Integer.compare(i1, i2);
}
}); // Adds a number into the data structure.
public void addNum(int num) {
minHeap.offer(num);
maxHeap.offer(minHeap.poll()); //if(maxHeap.size() > minHeap.size())
if(maxHeap.size() - minHeap.size() == 1){
minHeap.offer(maxHeap.poll());
}
} // Returns the median of current data stream
public double findMedian() {
return minHeap.size() > maxHeap.size()
? (double)minHeap.peek()
: (minHeap.peek() + maxHeap.peek())/2.0;
}
};

两个已排序数组的中位数


public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length;
int n = nums2.length;
int mid1 = (m+n+1)/2;
int mid2 = (m+n+2)/2;
return (findKthNum(nums1,0,nums2,0,mid1) + findKthNum(nums1,0,nums2,0,mid2))/2.0;
}
public int findKthNum(int[] nums1,int start1,int[] nums2,int start2,int k){
if(start1>nums1.length-1){return nums2[start2+k-1];}
if(start2>nums2.length-1){return nums1[start1+k-1];}
if(k==1) return Math.min(nums1[start1],nums2[start2]);
int mid1 = Integer.MAX_VALUE,mid2=Integer.MAX_VALUE;
if(nums1.length-start1+1>k/2){mid1 = nums1[start1+k/2 - 1];}
if(nums2.length-start2+1>k/2){mid2 = nums2[start2+k/2 - 1];}
if(mid1<mid2){
return findKthNum(nums1,start1+k/2,nums2,start2,k-k/2);
}else{
return findKthNum(nums1,start1,nums2,start2+k/2,k-k/2);
}
}
}

旋转数组中找到最小的数字


public class Solution {
public int findMin(int[] nums) {
int len = nums.length;
int l=0;
int r=len-1;
while(l<r){
if(nums[l]<nums[r]){return nums[l];}
int mid = l + (r-l)/2;
if(nums[mid]>nums[r]){
l = mid + 1;
}else if(nums[mid]<nums[r]){
r = mid;
}else{
r--;
}
}
return nums[l];
}
}

旋转数组中搜索一个数字


public class Solution {
public boolean search(int[] nums, int target) {
int start = 0, end = nums.length - 1, mid = -1;
while(start <= end) {
mid = (start + end) / 2;
if (nums[mid] == target) {
return true;
}
//If we know for sure right side is sorted or left side is unsorted
if (nums[mid] < nums[end] || nums[mid] < nums[start]) {
if (target > nums[mid] && target <= nums[end]) {
start = mid + 1;
} else {
end = mid - 1;
}
//If we know for sure left side is sorted or right side is unsorted
} else if (nums[mid] > nums[start] || nums[mid] > nums[end]) {
if (target < nums[mid] && target >= nums[start]) {
end = mid - 1;
} else {
start = mid + 1;
}
//If we get here, that means nums[start] == nums[mid] == nums[end], then shifting out
//any of the two sides won't change the result but can help remove duplicate from
//consideration, here we just use end-- but left++ works too
} else {
end--;
}
} return false;
}
}

归并两个排序链表


public class Solution {
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
if(l1==null||l2==null) return l1==null?l2:l1;
ListNode head = null;
if(l1.val<=l2.val) {
head=l1;
l1=l1.next;
}
else {
head=l2;
l2=l2.next;
}
ListNode temp = head;
while(l1!=null&&l2!=null){
if(l1.val<=l2.val) {
temp.next=l1;
l1=l1.next;
}
else {
temp.next=l2;
l2=l2.next;
};
temp=temp.next;
}
temp.next=l1==null?l2:l1;
return head;
}
}

归并K个排序链表


public class Solution {
public static ListNode mergeKLists(ListNode[] lists){
return partion(lists,0,lists.length-1);
} public static ListNode partion(ListNode[] lists,int s,int e){
if(s==e) return lists[s];
if(s<e){
int q=(s+e)/2;
ListNode l1=partion(lists,s,q);
ListNode l2=partion(lists,q+1,e);
return merge(l1,l2);
}else
return null;
} //This function is from Merge Two Sorted Lists.
public static ListNode merge(ListNode l1,ListNode l2){
if(l1==null) return l2;
if(l2==null) return l1;
if(l1.val<l2.val){
l1.next=merge(l1.next,l2);
return l1;
}else{
l2.next=merge(l1,l2.next);
return l2;
}
}
}

寻找重复数字,O(N),O(1)

参考:Find the Duplicate Number


public class Solution {
public int findDuplicate(int[] nums) {
int slow = 0;
int fast = 0;
do{
slow = nums[slow];
fast = nums[nums[fast]];
}while(slow!=fast);
int find = 0;
do{
slow = nums[slow];
find = nums[find];
}while(slow!=find);
return find;
}
}

第一个不存在的正数


public class Solution {
public int firstMissingPositive(int[] nums) {
int n= nums.length;
for(int i=0;i<n;){
if(nums[i]>0 && nums[i]<=n && nums[i]!=nums[nums[i]-1]){
swap(nums,i,nums[i]-1);
}else{
i++;
}
}
int j=0;
for(j=0;j<n;j++){
if(j+1 != nums[j]){
return j+1;
}
}
return n+1;
}
public void swap(int[] nums,int i,int j){
int tmp = nums[j];
nums[j] = nums[i];
nums[i] = tmp;
}
}

KMP算法


class Solution {
public:
void getNext(vector<int> &next,string &needle){
int i=0,j=-1;
next[i] = j;
while(i<needle.size()-1){
while(j != -1 && needle[i]!=needle[j]){
j = next[j];
}
i++;
j++;
if(needle[i] == needle[j]) next[i]=next[j];
else next[i] = j;
}
}
int strStr(string haystack, string needle) {
if (haystack.empty()) return needle.empty() ? 0 : -1;
if (needle.empty()) return 0;
vector<int> next(needle.size()+1);
getNext(next,needle);
int i=0,j=0;
while(i != haystack.size()){
while(j!=-1 && haystack[i] != needle[j]){j=next[j];}
i++;
j++;
if(j == needle.size()) return i-j;
}
return -1;
}
};

寻找数列的峰点(比两边数字都大的点)


public class Solution {
public int findPeakElement(int[] num) {
return helper(num,0,num.length-1);
}
public int helper(int[] num,int start,int end){
if(start == end){
return start;
}else if(start+1 == end){
if(num[start] > num[end]) return start;
return end;
}else{
int m = (start+end)/2;
if(num[m] > num[m-1] && num[m] > num[m+1]){
return m;
}else if(num[m-1] > num[m] && num[m] > num[m+1]){
return helper(num,start,m-1);
}else{
return helper(num,m+1,end);
}
}
}
}

LeetCode(一)的更多相关文章

  1. 我为什么要写LeetCode的博客?

    # 增强学习成果 有一个研究成果,在学习中传授他人知识和讨论是最高效的做法,而看书则是最低效的做法(具体研究成果没找到地址).我写LeetCode博客主要目的是增强学习成果.当然,我也想出名,然而不知 ...

  2. LeetCode All in One 题目讲解汇总(持续更新中...)

    终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...

  3. [LeetCode] Longest Substring with At Least K Repeating Characters 至少有K个重复字符的最长子字符串

    Find the length of the longest substring T of a given string (consists of lowercase letters only) su ...

  4. Leetcode 笔记 113 - Path Sum II

    题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...

  5. Leetcode 笔记 112 - Path Sum

    题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...

  6. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  7. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  8. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  9. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

  10. Leetcode 笔记 101 - Symmetric Tree

    题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...

随机推荐

  1. List<T>线性查找和二分查找BinarySearch效率分析

    今天因为要用到List的查找功能,所以写了一段测试代码,测试线性查找和二分查找的性能差距,以决定选择哪种查找方式. 线性查找:Contains,Find,IndexOf都是线性查找. 二分查找:Bin ...

  2. Lucene/Solr搜索引擎开发笔记 - 第2章 Solr安装与部署(Tomcat篇)

    一.安装环境 图1-1 Tomcat和Solr的版本 我本机目前使用的Java版本为JDK 1.8,因为Solr 4.9要求Java版本为1.7+,请注意. 二.Solr部署到Tomcat流程 图1- ...

  3. eclipse美化

    // */ // ]]>   eclipse美化 Table of Contents 1 中文字体 2 皮肤 3 emacs+ 1 中文字体 win7下打开eclipse3.7中文字体很小,简直 ...

  4. WeX5学习笔记-创建本地APP相关问题

    1.在Native新建[创建本地APP]时, "服务地址”为本地IP和端口号,例如本地IP为192.168.253.1,端口号为8080,则设置为http://192.168.253.1:8 ...

  5. JVM垃圾回收参数说明整理

    java -Xms4g -Xmx4g -Xmn3g -Xss256k -server -XX:PermSize=64M -XX:MaxPermSize=64M -XX:+UseConcMarkSwee ...

  6. Zero Requiem

    “最后是在游行.暴君鲁路修高居王座,两侧列着所有反对者的代表:黑色骑士团.黎星刻.原圆桌骑士名列第三的吉诺,以及一身女囚装的娜娜丽,他们都即将被公开处死.尤菲米娅在第一次“特别行政区•日本”成立仪式上 ...

  7. 更改RAC日志组

    alter database add logfile thread 1 group 5 ('+DATA/idb/onlinelog/group5.log') size 256m;alter datab ...

  8. Jmeter学习一:Jmeter性能测试环境搭建(Windows下)

    最近刚开始接触Jmeter性能测试,现总结环境搭建如下: 一.windows安装JDK步骤与环境变量配置: 1.先将下载的JDK安装到其默认目录:C:\Program Files\Java\jdk1. ...

  9. IMX6输出可控PWM

    驱动部分 #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h& ...

  10. Linux下find命令

    转自:http://www.cnblogs.com/skynet/archive/2010/12/25/1916873.html 1.1.find命令的一般形式 man文档中给出的find命令的一般形 ...