Stockbroker Grapevine

Time Limit: 1000MS
Memory Limit: 10000K

Description

Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way.
Unfortunately for you, stockbrokers only trust information coming from their "Trusted sources" This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.

Input

Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a '1' means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules.
Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people.

Output

For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes.
It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message "disjoint". Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.

Sample Input

3
2 2 4 3 5
2 1 2 3 6
2 1 2 2 2
5
3 4 4 2 8 5 3
1 5 8
4 1 6 4 10 2 7 5 2
0
2 2 5 1 5
0

Sample Output

3 2
3 10

[Submit]   [Go Back]   [Status]   [Discuss]

 

   1: #include <iostream>

   2: #include <cstdio>

   3: #include <cstring>

   4: #include <algorithm>

   5: using namespace std;

   6: const int INF=2147483647;

   7: const int maxn=100;

   8:  

   9: int g[maxn+2][maxn+2];//储存人际关系

  10: int n;

  11:  

  12: void floyd()

  13: {

  14:     int i,j,k;

  15:     for(k=0; k<n; k++)

  16:         for(i=0; i<n; i++)

  17:         {

  18:             if(g[i][k]!=0)//i,k之间有路径

  19:                 for(j=0; j<n; j++)

  20:                 {

  21:                     if(g[k][j]&&i!=j)//k,j之间有路径

  22:                         if(g[i][j]==0||(g[i][j]>g[i][k]+g[k][j]))

  23:                              g[i][j]=g[i][k]+g[k][j];

  24:                 }

  25:         }

  26: }

  27:  

  28: void show()//对本题无用,只是输出中间过程便于观察

  29: {

  30:     int i,j;

  31:     for( i=0;i<n;i++)

  32:     {

  33:         for(j=0; j<n; j++)

  34:            printf("%d ",g[i][j]);

  35:         printf("\n");

  36:     }

  37: }

  38:  

  39: void solve()

  40: {

  41:     int i,j,a,time,m;

  42:     memset(g,0,sizeof(g));

  43:     for(i=0; i<n; i++){

  44:         scanf("%d",&m);

  45:         for(j=0;j<m;j++){

  46:             scanf("%d%d",&a,&time);

  47:             g[i][--a]=time;

  48:         }

  49:     }

  50:     floyd();

  51:     //show();

  52:     int mi=INF;

  53:     for(i=0;i<n;i++)

  54:     {

  55:         time=0;

  56:         for(j=0; j<n; j++)

  57:             if(i!=j)

  58:             {

  59:                 if(g[i][j]==0){ time=INF; break; }

  60:                 time=max(g[i][j],time);

  61:             }

  62:         if(mi>time){

  63:             a=i,mi=time;

  64:         }

  65:     }

  66:     if(mi<INF) printf("%d %d\n", ++a, mi);

  67:     else printf("disjoint\n");

  68: }

  69:  

  70: int main()

  71: {

  72:     //freopen("in.txt","r",stdin);

  73:     while(scanf("%d",&n)&&n)

  74:         solve();

  75:     return 0;

  76: }

poj1125&zoj1082Stockbroker Grapevine(Floyd算法)的更多相关文章

  1. poj1125 Stockbroker Grapevine Floyd

    题目链接:http://poj.org/problem?id=1125 主要是读懂题意 然后就很简单了 floyd算法的应用 代码: #include<iostream> #include ...

  2. POJ1125-Stockbroker Grapevine Floyd算法多源最短路径

    这题的思路还是比较简单,用弗洛伊德算法打表后,枚举来找到最小值 代码如下 注意最后判断时候的语句 在这里错误了很多次 # include<iostream> # include<al ...

  3. Poj 1125 Stockbroker Grapevine(Floyd算法求结点对的最短路径问题)

    一.Description Stockbrokers are known to overreact to rumours. You have been contracted to develop a ...

  4. Stockbroker Grapevine(floyd)

    Stockbroker Grapevine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28231   Accepted: ...

  5. Floyd算法C++实现与模板题应用

    简介 Floyd算法算是最简单的算法,没有之一. 其状态转移方程如下map[i , j] =min{ map[i , k] + map[k , j] , map[i , j] }: map[i , j ...

  6. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  7. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  8. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  9. floyd算法小结

    floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这 ...

随机推荐

  1. Spring核心概念之AOP

    一.AOP 的概念 AOP(Aspect Oriented Programming)的缩写,面向切面编程,主要作用就是对代码进行增强处理. 理解面向切面编程的含义:就是在不改变原有程序的基础上为代码增 ...

  2. [moka同学笔记]Yii2.0验证码

    1.Model中Code.php <?php /** * Created by PhpStorm. * User: moka同学 * Date: 2016/07/25 * Time: 10:48 ...

  3. [moka同学笔记]yii2.0 advanced高级版 安装配置 与 rbac (Ⅰ)

    1.下载地址:http://www.yiichina.com/download,下载 Yii2 的高级应用程序模板 2.配置与安装 在服务器www目录下yii2test  [下载下来更改advance ...

  4. 我见过的几门语言中的hello world

    1.Java public class hello { public static void main(String[] args){ System.out.println("hello w ...

  5. Python基础(一),Day1

    python的安装 python2.x与3.x的部分区别 第一个python程序 变量 字符编码 注释 格式化字符串 用户输入 常用的模块初始 if判断 循环语句 作业 1.python的安装 可以在 ...

  6. Ahjesus获取自定义属性Attribute或属性的名称

    1:设置自己的自定义属性 public class NameAttribute:Attribute { private string _description; public NameAttribut ...

  7. 利用多写Redis实现分布式锁原理与实现分析(转)

    利用多写Redis实现分布式锁原理与实现分析   一.关于分布式锁 关于分布式锁,可能绝大部分人都会或多或少涉及到. 我举二个例子:场景一:从前端界面发起一笔支付请求,如果前端没有做防重处理,那么可能 ...

  8. android开发布局文件imageview 图片等比例缩放:

    ImageView的属性scaleType,如果等比缩放的话,就使用CenterInside,如果想固定大小的话,就CenterCrop <?xml version="1.0" ...

  9. Erlang高阶函数

    对于函数式语言来说,函数也想普通的数据类型一样无处不在.函数即可以当成参数进行传递,也可以当成函数的返回值.当我第一次学习函数式编程的时候,我被这样的写法弄的头昏脑涨.下面我举例说明下(例子摘录自Le ...

  10. js实现拖拽

    拖拽:最核心是三个事件,鼠标按下,鼠标移动,鼠标弹起.按下时激活拖拽,然后时刻根据鼠标的位置来更新物体的left和top值,达到跟随鼠标的效果,鼠标弹起则取消拖拽. 以下是代码: <!DOCTY ...