Stockbroker Grapevine

Time Limit: 1000MS
Memory Limit: 10000K

Description

Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way.
Unfortunately for you, stockbrokers only trust information coming from their "Trusted sources" This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.

Input

Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a '1' means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules.
Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people.

Output

For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes.
It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message "disjoint". Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.

Sample Input

3
2 2 4 3 5
2 1 2 3 6
2 1 2 2 2
5
3 4 4 2 8 5 3
1 5 8
4 1 6 4 10 2 7 5 2
0
2 2 5 1 5
0

Sample Output

3 2
3 10

[Submit]   [Go Back]   [Status]   [Discuss]

 

   1: #include <iostream>

   2: #include <cstdio>

   3: #include <cstring>

   4: #include <algorithm>

   5: using namespace std;

   6: const int INF=2147483647;

   7: const int maxn=100;

   8:  

   9: int g[maxn+2][maxn+2];//储存人际关系

  10: int n;

  11:  

  12: void floyd()

  13: {

  14:     int i,j,k;

  15:     for(k=0; k<n; k++)

  16:         for(i=0; i<n; i++)

  17:         {

  18:             if(g[i][k]!=0)//i,k之间有路径

  19:                 for(j=0; j<n; j++)

  20:                 {

  21:                     if(g[k][j]&&i!=j)//k,j之间有路径

  22:                         if(g[i][j]==0||(g[i][j]>g[i][k]+g[k][j]))

  23:                              g[i][j]=g[i][k]+g[k][j];

  24:                 }

  25:         }

  26: }

  27:  

  28: void show()//对本题无用,只是输出中间过程便于观察

  29: {

  30:     int i,j;

  31:     for( i=0;i<n;i++)

  32:     {

  33:         for(j=0; j<n; j++)

  34:            printf("%d ",g[i][j]);

  35:         printf("\n");

  36:     }

  37: }

  38:  

  39: void solve()

  40: {

  41:     int i,j,a,time,m;

  42:     memset(g,0,sizeof(g));

  43:     for(i=0; i<n; i++){

  44:         scanf("%d",&m);

  45:         for(j=0;j<m;j++){

  46:             scanf("%d%d",&a,&time);

  47:             g[i][--a]=time;

  48:         }

  49:     }

  50:     floyd();

  51:     //show();

  52:     int mi=INF;

  53:     for(i=0;i<n;i++)

  54:     {

  55:         time=0;

  56:         for(j=0; j<n; j++)

  57:             if(i!=j)

  58:             {

  59:                 if(g[i][j]==0){ time=INF; break; }

  60:                 time=max(g[i][j],time);

  61:             }

  62:         if(mi>time){

  63:             a=i,mi=time;

  64:         }

  65:     }

  66:     if(mi<INF) printf("%d %d\n", ++a, mi);

  67:     else printf("disjoint\n");

  68: }

  69:  

  70: int main()

  71: {

  72:     //freopen("in.txt","r",stdin);

  73:     while(scanf("%d",&n)&&n)

  74:         solve();

  75:     return 0;

  76: }

poj1125&zoj1082Stockbroker Grapevine(Floyd算法)的更多相关文章

  1. poj1125 Stockbroker Grapevine Floyd

    题目链接:http://poj.org/problem?id=1125 主要是读懂题意 然后就很简单了 floyd算法的应用 代码: #include<iostream> #include ...

  2. POJ1125-Stockbroker Grapevine Floyd算法多源最短路径

    这题的思路还是比较简单,用弗洛伊德算法打表后,枚举来找到最小值 代码如下 注意最后判断时候的语句 在这里错误了很多次 # include<iostream> # include<al ...

  3. Poj 1125 Stockbroker Grapevine(Floyd算法求结点对的最短路径问题)

    一.Description Stockbrokers are known to overreact to rumours. You have been contracted to develop a ...

  4. Stockbroker Grapevine(floyd)

    Stockbroker Grapevine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28231   Accepted: ...

  5. Floyd算法C++实现与模板题应用

    简介 Floyd算法算是最简单的算法,没有之一. 其状态转移方程如下map[i , j] =min{ map[i , k] + map[k , j] , map[i , j] }: map[i , j ...

  6. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  7. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  8. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  9. floyd算法小结

    floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这 ...

随机推荐

  1. 比较body.onload(function())、$(document).ready(function())与$(windows).load(function)

    原理对比: body.onload(function())是优先将document的DOM渲染,即将页面所有的元素(包括html标签以及所引用到的图片,flash媒体等媒体文件)加载完成,然后再执行页 ...

  2. Android读写SD卡

    SD卡的读写是我们在开发Android 应用程序过程中最常见的操作.下面介绍SD卡的读写操作方式: 1. 获取SD卡的根目录 String sdCardRoot = Environment.getEx ...

  3. c#重点[集合类型]异常,数组,集合ArrayList,List<>,hashTable,hashtable泛型(Dictionary)

    1.foreach[对一些数组或集合进行遍历] foreach(类型 变量名 in 集合对象){语句体} //定义一个数组 ,,,,, }; foreach(var i in sNum1) { Con ...

  4. MSIL指令集

    名称 说明 Add 将两个值相加并将结果推送到计算堆栈上. Add.Ovf 将两个整数相加,执行溢出检查,并且将结果推送到计算堆栈上. Add.Ovf.Un 将两个无符号整数值相加,执行溢出检查,并且 ...

  5. linux下导入、导出mysql数据库命令 下载文件到本地

    一.下载到本地 yum install lrzsz sz filename  下载 rz filename  上传   linux下导入.导出mysql数据库命令 一.导出数据库用mysqldump命 ...

  6. lnmp+phpmyadmin配置与出现问题

    本博客归moka同学(新浪微博:moka同学)本人亲自整理,如有使用,请加链接注明出处. lnmp 安装完全后,配置phpmyadmin .其访问方式为 http://202.18.400.379/p ...

  7. 【洛谷 p3374】模板-树状数组 1(数据结构)

    题目:已知一个数列,你需要进行下面两种操作:1.将某一个数加上x:2.求出某区间每一个数的和. 解法:树状数组求前缀和. #include<cstdio> #include<cstd ...

  8. 硅谷新闻8--TabLayout替换ViewPagerIndicator

    1.关联库 compile 'com.android.support:design:23.3.0' 2.布局写上TabLayout <android.support.design.widget. ...

  9. javascript --- 将共享属性迁移到原型中去

    当我们用一个构造函数创建对象时,其属性就会被添加到this中去.并且被添加到this中的属性实际上不会随着实体发生改变,这时,我们这种做法显得会很没有效率.例如: function her(){ th ...

  10. SAP 锁机制

    SAP锁机制一.SAP为什么要设置锁:   1,保持数据的一致性     如果几个用户要访问同样的资源,需要找到一种同步访问的方法去保持数据的一致性.比如说,在航班预订系 统中,需要检查还有没有空座位 ...