思路

n<=15,所以状压

因为求期望,所以采用逆推的思路,设\(f[i][S]\)表示1i的宝物获得情况是S,i+1k的期望

状态转移是当k可以取时,\(f[i][S]+=max(f[i+1][S|(1<<(k-1))]+val[k],f[i+1][S])\)

k不可以取得时候,\(f[i][S]+=f[i+1][S]\)

这样一层转移完后,相当于\(f[i][S]\)有了取每种物品的最优取值,再除以n即可

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
double dp[105][(1<<16)];
int n,K,pre[50],val[50];
int main(){
scanf("%d %d",&K,&n);
for(int i=1;i<=n;i++){
scanf("%d",&val[i]);
int x;
scanf("%d",&x);
while(x){
pre[i]|=(1<<(x-1));
scanf("%d",&x);
}
}
for(int i=K;i>=1;i--){
for(int j=0;j<(1<<n);j++){
for(int k=1;k<=n;k++){
if((pre[k]&j)==pre[k]){
dp[i][j]+=max(dp[i+1][j|(1<<(k-1))]+val[k],dp[i+1][j]);
}
else
dp[i][j]+=dp[i+1][j];
}
dp[i][j]/=n;
}
}
printf("%.6lf\n",dp[1][0]);
return 0;
}

P2473 [SCOI2008]奖励关的更多相关文章

  1. LG P2473 [SCOI2008]奖励关

    题目链接:P2473 [SCOI2008]奖励关 题意:有n个宝物 每次等概率抛出其中之一一共抛出k次每个宝物有一个价值 和一个前提集合只有集齐了集合中的所有宝物 才可以领取这个宝物 范围:1 < ...

  2. P2473 [SCOI2008]奖励关(期望)

    P2473 [SCOI2008]奖励关 $n<=15$,显然的状压 设$f[i][w]$表示前$i$轮,状态$w$的最大期望 蓝后我们发现一个问题:$f[i][w]$可能是非法的 于是我们从$f ...

  3. 洛谷 P2473 [SCOI2008]奖励关 解题报告

    P2473 [SCOI2008]奖励关 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝 ...

  4. Luogu P2473 [SCOI2008]奖励关

    比较恶心的概率(期望)+状压DP,想正推2H的我瑟瑟发抖 由于数据范围不大,因此我们可以直接状压每个宝物取或不取的情况,设\(f_{i,j}\)表示前\(i\)轮且宝物是否取过的状态为\(j\)时的方 ...

  5. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  6. 洛谷P2473 [SCOI2008]奖励关(期望+状压)

    传送门 我数学期望还是太差了…… 先考虑状压模型,设$dp[i][S]$表示第$i$轮,当前宝物状态为$S$,能获得的最大期望分数 然而这个模型有一个问题,第$i$轮不一定能达到状态$S$ 那么考虑转 ...

  7. 洛谷 P2473 [SCOI2008]奖励关 ( 期望DP )

    题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观 ...

  8. 【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】

    P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不 ...

  9. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

随机推荐

  1. git server 配置

    因为后面要采用Git代替Subversion,花了点时间配置了Git服务端和客户端,像以前一样,仍然基于最新的Ubuntu11.10 server/desktop系统. 感谢这几篇文章的作者: htt ...

  2. 5.无监督学习-DBSCAN聚类算法及应用

    DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1 ...

  3. JavaBean和List<JavaBean>

    2018-11-04 23:04:03开始写 返回泛型为User是列表 public List<User> getUserInfo() { conn = getConn();//获取数据库 ...

  4. CocoaPod 使用(I)

    1. 添加一个 Podfile 文件 在终端先找到你要放入 Podfile 的文件路径: cd 文件路径 cd /Users/XXX/Desktop/RAC 然后敲入: pod init 就会给你建立 ...

  5. Base64图片编码原理,base64图片工具介绍,图片在线转换Base64

    Base64图片编码原理,base64图片工具介绍,图片在线转换Base64 DataURI 允许在HTML文档中嵌入小文件,可以使用 img 标签或 CSS 嵌入转换后的 Base64 编码,减少  ...

  6. 以太坊智能合约介绍,Solidity介绍

    以太坊智能合约介绍,Solidity介绍 一个简单的智能合约 先从一个非常基础的例子开始,不用担心你现在还一点都不了解,我们将逐步了解到更多的细节. Storage contract SimpleSt ...

  7. java was started but exit code =-805306369

       打开STS 时报  java was started but exit code =-805306369这个错,一个页面. 原因我把STS里面的默认jdk换成了7.但是STS的ini文件里依赖的 ...

  8. いろはちゃんとマス目 / Iroha and a Grid (组合数学)

    题目链接:http://abc042.contest.atcoder.jp/tasks/arc058_b Time limit : 2sec / Memory limit : 256MB Score ...

  9. POJ 1018 Communication System (动态规划)

    We have received an order from Pizoor Communications Inc. for a special communication system. The sy ...

  10. postgresql查询语句

    //查询表名称SELECT tablename FROM pg_tablesWHERE tablename NOT LIKE 'pg%'AND tablename NOT LIKE 'sql_%' O ...