题意

给定 \(n\) 个数 \(a_1,a_2,\cdots a_n\),对于每个 \(K\in[1,n]\) ,求出 \(n\) 个数的每个子集的前 \(K\) 大数的和,输出每个值,对 \(998244353\) 取模。

\(1\leq n \leq 10^5\)

思路

设 \(K\) 为 \(k\) 时的答案为 \(ans_k\)

\[ans_k=\sum_{i=1}^na_i2^{n-i}\sum_{j=0}^{k-1}{i-1\choose j}
\]

\(j\) 为在 \(a_i\) 的左边选了多少个数。定义当\(i<j\) 时 \(\displaystyle{i\choose j}=0\) ,即当 \(n<0\) 时 \(\displaystyle{1\over n!}=0\)

有两个\(\sum\) ,导致难以化简,但是我们发现差分后只有一个 \(\sum\)

设 \(d_k=ans_k-ans_{k-1}\) ,则有

\[d_k=\sum_{i=1}^na_i2^{n-i}{i-1\choose k-1}\\
d_k=(k-1)!\sum_{i=1}^na_i2^{n-i}(i-1)!\cdot{1\over{(i-k)!}}
\]

用 \(i+k\) 替换 \(k\) ,并化成卷积形式

\[d_{i+k}=(i+k-1)!a_i2^{n-i}(i-1)!\cdot{1\over{(-k)!}}
\]

其中 \(i\in[1,n],i+k\in[1,n],k\in[1-n,n-1]\)

设 \(\displaystyle A_i=a_i2^{n-i}(i-1)!,B_k={1\over{(-k)!}}\)

\(d_{i+k}=(i+k-1)A_iB_k\)

处理出 \(A,B\) 两多项式,进行卷积求解即可。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long ll;
using namespace std;
const int P=998244353,g=3;
const int N=1<<17|5;
namespace Maths
{
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,y,x),y-=a/b*x;
}
ll Pow(ll a,ll p,ll P)
{
ll res=1;
for(;p>0;p>>=1,(a*=a)%=P)if(p&1)(res*=a)%=P;
return res;
}
ll inv(ll a,ll P){ll x,y;exgcd(a,P,x,y);return (x%P+P)%P;}
};
using namespace Maths;
namespace _NTT
{
const int g=3,P=998244353;
int A[N<<1],B[N<<1];
int w[N<<1],r[N<<1];
void NTT(int *a,int op,int n)
{
FOR(i,0,n-1)if(i<r[i])swap(a[i],a[r[i]]);
for(int i=2;i<=n;i<<=1)
for(int j=0;j<n;j+=i)
for(int k=0;k<i/2;k++)
{
int u=a[j+k],t=(ll)w[op==1?n/i*k:n-n/i*k]*a[j+k+i/2]%P;
a[j+k]=(u+t)%P;
a[j+k+i/2]=(u-t)%P;
}
}
void multiply(int *a,int *b,int *c,int n1,int n2)
{
int n=1;
while(n<n1+n2-1)n<<=1;
FOR(i,0,n1-1)A[i]=a[i];
FOR(i,0,n2-1)B[i]=b[i];
FOR(i,n1,n-1)A[i]=0;
FOR(i,n2,n-1)B[i]=0;
FOR(i,0,n-1)r[i]=(r[i>>1]>>1)|((i&1)*(n>>1));
w[0]=1,w[1]=Pow(g,(P-1)/n,P);
FOR(i,2,n)w[i]=(ll)w[i-1]*w[1]%P; NTT(A,1,n),NTT(B,1,n);
FOR(i,0,n-1)A[i]=(ll)A[i]*B[i]%P;
NTT(A,-1,n);
int I=inv(n,P);
FOR(i,0,n1+n2-2)c[i]=((ll)A[i]*I%P+P)%P;
}
};
int A[N],B[N],C[N<<2];
int fac[N],c[N],S;
int n,m; int main()
{
fac[0]=1;FOR(i,1,N-1)fac[i]=(ll)fac[i-1]*i%P;
while(~scanf("%d",&n))
{
FOR(i,0,n)scanf("%d",&c[i]);
scanf("%d",&m);
S=0;
while(m--)
{
int x;
scanf("%d",&x);
S-=x;
if(S<0)S+=P;
}
FOR(i,0,n)A[i]=(ll)c[i]*fac[i]%P;
FOR(i,-n,0)B[i+n]=Pow(S,-i,P)*inv(fac[-i],P)%P;
_NTT::multiply(A,B,C,n+1,n+1);
FOR(i,0,n)printf("%lld ",(C[i+n]*inv(fac[i],P)%P+P)%P);
puts("");
}
return 0;
}

HDU 5829 Rikka with Subset(NTT)的更多相关文章

  1. HDU - 5829:Rikka with Subset (NTT)

    As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some mat ...

  2. HDU 6092 Rikka with Subset(dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...

  3. hdu 6092 Rikka with Subset(逆向01背包+思维)

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. 2017 ACM暑期多校联合训练 - Team 5 1008 HDU 6092 Rikka with Subset (找规律)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

  5. HDU 6088 Rikka with Rock-paper-scissors(NTT+欧拉函数)

    题意 \(n\) 局石头剪刀布,设每局的贡献为赢的次数与输的次数之 \(\gcd\) ,求期望贡献乘以 \(3^{2n}\) ,定义若 \(xy=0\) 则,\(\gcd(x,y)=x+y\) 思路 ...

  6. hdu 6092 Rikka with Subset(多重背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6092 #include <cstdio> #include <iostream> ...

  7. hdu 5423 Rikka with Tree(dfs)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  8. hdu 5423 Rikka with Tree(dfs)bestcoder #53 div2 1002

    题意: 输入一棵树,判断这棵树在以节点1为根节点时,是否是一棵特殊的树. 相关定义: 1.  定义f[A, i]为树A上节点i到节点1的距离,父节点与子节点之间的距离为1. 2.  对于树A与树B,如 ...

  9. hdu 5631 Rikka with Graph(图)

    n个点最少要n-1条边才能连通,可以删除一条边,最多删除2条边,然后枚举删除的1条边或2条边,用并查集判断是否连通,时间复杂度为O(n^3) 这边犯了个错误, for(int i=0;i<N;i ...

随机推荐

  1. Robotframework 3- 安装

    1. 安装, python3 安装好后,在cmd中运行 pip install robotframework # Install the latest version (does not upgrad ...

  2. plsql连接远程oracle数据库

    1.在oracle安装目录D:\app\Eric\product\11.2.0\dbhome_1\NETWORK\ADMIN找到tnsnames.ora:2.ORCL =(DESCRIPTION = ...

  3. Linux 软件安装卸载命令

    安装方式一: RPM 命令 rpm -qa|grep java  查看java 是否安装 rpm -e --nodeps  软件名   卸载已安装软件 rpm -ivh xxx.rpm   安装 安装 ...

  4. 微信小程序制作家庭记账本之四

    第四天,仍然对记账本代码进行研究,对按钮的大小设置,颜色,具体位置进行分析,但其中很多代码都不明白.

  5. Linux基础命令---验证组文件grpck

    grpck grpck指令可以验证组文件“/etc/group”和“/etc/gshadow”的完整性.检查的内容包括:正确的字段数.唯一有效的组名称.有效的组标识符.成员和管理员的有效列表.“/et ...

  6. Qt介绍1---QPA(Qt Platform Abstraction)

    Qt是一个夸平台的库(一直宣称“Qt everywhere”),但是Qt底层不是夸平台的.比如:Qt中Gui部件的核心类QWidget,该类除了qwidget.h 和 qwidget.cpp两个原文件 ...

  7. 系统调用号、errno

    最近老需要看系统调用号,errno,所以这里记一下 CentOS Linux release 7.2.1511 (Core) 3.10.0-327.el7.x86_64 [root@localhost ...

  8. python smtplib 发送邮件简单介绍

    SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式python的smtplib提供了一种很 ...

  9. SQL SERVER镜像配置,无法将 ALTER DATABASE 命令发送到远程服务器实例的解决办法

    环境:非域环境 因为是自动故障转移,需要加入见证,事务安全模式是,强安全FULL模式 做到最后一步的时候,可能会遇到 执行( ALTER DATABASE [mirrortest] SET WITNE ...

  10. Java精选面试题之Spring Boot 三十三问

    Spring Boot Spring Boot 是微服务中最好的 Java 框架. 我们建议你能够成为一名 Spring Boot 的专家. 问题一: Spring Boot.Spring MVC 和 ...