Mahmoud and Ehab continue their adventures! As everybody in the evil land knows, Dr. Evil likes bipartite graphs, especially trees.

A tree is a connected acyclic graph. A bipartite graph is a graph, whose vertices can be partitioned into 2 sets in such a way, that for each edge (u, v) that belongs to the graph, u and v belong to different sets. You can find more formal definitions of a tree and a bipartite graph in the notes section below.

Dr. Evil gave Mahmoud and Ehab a tree consisting of n nodes and asked them to add edges to it in such a way, that the graph is still bipartite. Besides, after adding these edges the graph should be simple (doesn't contain loops or multiple edges). What is the maximum number of edges they can add?

A loop is an edge, which connects a node with itself. Graph doesn't contain multiple edges when for each pair of nodes there is no more than one edge between them. A cycle and a loop aren't the same .

Input

The first line of input contains an integer n — the number of nodes in the tree (1 ≤ n ≤ 105).

The next n - 1 lines contain integers u and v (1 ≤ u, v ≤ nu ≠ v) — the description of the edges of the tree.

It's guaranteed that the given graph is a tree.

Output

Output one integer — the maximum number of edges that Mahmoud and Ehab can add to the tree while fulfilling the conditions.

Examples

Input
3
1 2
1 3
Output
0
Input
5
1 2
2 3
3 4
4 5
Output
2

Note

Tree definition: https://en.wikipedia.org/wiki/Tree_(graph_theory)

Bipartite graph definition: https://en.wikipedia.org/wiki/Bipartite_graph

In the first test case the only edge that can be added in such a way, that graph won't contain loops or multiple edges is (2, 3), but adding this edge will make the graph non-bipartite so the answer is 0.

In the second test case Mahmoud and Ehab can add edges (1, 4) and (2, 5).

题意:给一个n个节点的,n-1条边,现在规定这个图拆成二分图,然后让你添加边,使他依然是二分图,问最多可以添加多少

思路:首先我们要分二分图,我采用了黑白染色,算出分别两边的节点数,然后我们可以得知,要加的边肯定就是剩下的黑白没有连边的点

公式: 总节点数-黑色节点数-当前黑色节点所连的白色节点数

然后累加所有的黑色节点值

#include<cstdio>
#include<cmath>
#include<vector>
#include<cstring>
using namespace std;
vector<int> d[];
int n;
int c[];
int vis[];
void dfs(int x,int y)//进行黑白染色
{
for(int i=;i<d[x].size();i++)
{
if(vis[d[x][i]]==)
{
vis[d[x][i]]=;
c[d[x][i]]=y;
dfs(d[x][i],!y);
}
}
}
int main()
{
scanf("%d",&n);
int x,y;
for(int i=;i<=n-;i++)
{
scanf("%d%d",&x,&y);
d[x].push_back(y);
d[y].push_back(x);
}
vis[]=;
dfs(,);
long long sum=;
int cnt=;
for(int i=;i<=n;i++)
{
if(c[i])
c[cnt++]=i;
}
for(int i=;i<cnt;i++)//公式计算
{
sum+=n-cnt-d[c[i]].size();
}
printf("%lld",sum);
}

E - Mahmoud and Ehab and the bipartiteness CodeForces - 862B (dfs黑白染色)的更多相关文章

  1. Codeforces 862B - Mahmoud and Ehab and the bipartiteness

    862B - Mahmoud and Ehab and the bipartiteness 思路:先染色,然后找一种颜色dfs遍历每一个点求答案. 代码: #include<bits/stdc+ ...

  2. Coderfroces 862 B . Mahmoud and Ehab and the bipartiteness

     Mahmoud and Ehab and the bipartiteness Mahmoud and Ehab continue their adventures! As everybody in ...

  3. CF862B Mahmoud and Ehab and the bipartiteness 二分图染色判定

    \(\color{#0066ff}{题目描述}\) 给出n个点,n-1条边,求再最多再添加多少边使得二分图的性质成立 \(\color{#0066ff}{输入格式}\) The first line ...

  4. codeforces 862B B. Mahmoud and Ehab and the bipartiteness

    http://codeforces.com/problemset/problem/862/B 题意: 给出一个有n个点的二分图和n-1条边,问现在最多可以添加多少条边使得这个图中不存在自环,重边,并且 ...

  5. 【Codeforces Round #435 (Div. 2) B】Mahmoud and Ehab and the bipartiteness

    [链接]h在这里写链接 [题意] 让你在一棵树上,加入尽可能多的边. 使得这棵树依然是一张二分图. [题解] 让每个节点的度数,都变成二分图的对方集合中的点的个数就好. [错的次数] 0 [反思] 在 ...

  6. CodeForces - 862B Mahmoud and Ehab and the bipartiteness(二分图染色)

    题意:给定一个n个点的树,该树同时也是一个二分图,问最多能添加多少条边,使添加后的图也是一个二分图. 分析: 1.通过二分图染色,将树中所有节点分成两个集合,大小分别为cnt1和cnt2. 2.两个集 ...

  7. E. Mahmoud and Ehab and the function Codeforces Round #435 (Div. 2)

    http://codeforces.com/contest/862/problem/E 二分答案 一个数与数组中的哪个数最接近: 先对数组中的数排序,然后lower_bound #include &l ...

  8. Codeforces 862B (二分图染色)

    <题目链接> 题目大意: 给出一个有n个点的二分图和n-1条边,问现在最多可以添加多少条边使得这个图中不存在自环,重边,并且此图还是一个二分图. 解题分析: 此题不难想到,假设二分图点集数 ...

  9. Codeforces 959 F. Mahmoud and Ehab and yet another xor task

    \(>Codeforces\space959 F. Mahmoud\ and\ Ehab\ and\ yet\ another\ xor\ task<\) 题目大意 : 给出一个长度为 \ ...

随机推荐

  1. 6 Django REST framework JWT 和登录功能实现

    JWT 在用户注册或登录后,我们想记录用户的登录状态,或者为用户创建身份认证的凭证. 我们不再使用Session认证机制,而使用Json Web Token认证机制. Json web token ( ...

  2. CentOS7.3将网卡命名方式设置为传统方式

    CentOS7.3将网卡命名方式设置为传统方式 生产环境可能拥有不同系列的操作系统,比如,既有CentOS6系列,也有CentOS7系列的系统,而CentOS6和CentOS7在网卡命名方面有着较大区 ...

  3. python记录_day23 正则表达式 re模块

    一. 正则表达式 使用python的re模块之前应该对正则表达式有一定的了解 正则表达式是对字符串操作的一种逻辑公式.我们一般使用正则表达式对字符串进行匹配和过滤. 正则的优缺点: 优点:灵活, 功能 ...

  4. list排序,顺序,倒序

    Collections.sort(list); // 顺序排列 Collections.reverse(list); // 倒序排列 Collections.shuffle(list); // 无序

  5. 判断input[type=file]上传文件格式

    input type="file" 在js中判断文件上传类型 function onSubmit(){ var form1 = document.forms[0]; var fil ...

  6. linux平台的oracle11201借用expdp定时备份数据库

    备份脚本如下: #!/bin/bashexport ORACLE_BASE=/data/oracle export ORACLE_HOME=$ORACLE_BASE/product/11.2.0/db ...

  7. java.sql.SQLException: Parameter index out of range (1 > number of parameters, which is 0).

    java.sql.SQLException: Parameter index out of range (1 > number of parameters, which is 0). at co ...

  8. Python内置模块之time、random、hashlib、OS、sys、UUID模块

    Python常用模块 1.time模块 在Python中,通常有这三种方式来表示时间:时间戳.元组(struct_time).格式化的时间字符串: (1)时间戳(timestamp) :通常来说,时间 ...

  9. 在springboot中用redis实现消息队列

    环境依赖 创建一个新的springboot工程,在其pom文件,加入spring-boot-starter-data-redis依赖: <dependency> <groupId&g ...

  10. JSP调试技巧

    我先谈谈: 我的经验就是多装几个服务器,这个查不出错误,用另一个,这个方法很好用. ---------------------------------------------------------- ...