np.where(condition[, x, y])

如果是一维,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

输入条件,类数组形式,若判断结果成立则返回x,否则为y。

返回为tuple或者array。

当条件对象为一维,返回array。

条件对象为二维,返回tuple。第一部分为矩阵行的坐标,第二部分为矩阵列的坐标。

当条件对象维高维,按照二维矩阵操作,判断其中对象。

np.eye(n)生成对象数组,在np.where中按照一维操作及返回。

以下为scipy doc原文。

numpy.where

numpy.where(condition[, xy])

Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

Parameters:

condition : array_like, bool

When True, yield x, otherwise yield y.

x, y : array_like, optional

Values from which to choose. x and y need to have the same shape as condition.

Returns:

out : ndarray or tuple of ndarrays

If both x and y are specified, the output array contains elements of x where condition is True, and elements from y elsewhere.

If only condition is given, return the tuple condition.nonzero(), the indices where condition is True.

See also

nonzerochoose

Notes

If x and y are given and input arrays are 1-D, where is equivalent to:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

np.where()

Examples

>>>
>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],
[3, 4]])
>>>
>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))
>>>
>>> x = np.arange(9.).reshape(3, 3)
>>> np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where( x > 3.0 )] # Note: result is 1D.
array([ 4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[ 0., 1., 2.],
[ 3., 4., -1.],
[-1., -1., -1.]])
Find the indices of elements of x that are in goodvalues. >>>
>>> goodvalues = [3, 4, 7]
>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)
>>> ix
array([[False, False, False],
[ True, True, False],
[False, True, False]], dtype=bool)
>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))

scipy doc : np.where()

numpy.where的更多相关文章

  1. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  2. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  3. 利用Python进行数据分析(6) NumPy基础: 矢量计算

    矢量化指的是用数组表达式代替循环来操作数组里的每个元素. NumPy提供的通用函数(既ufunc函数)是一种对ndarray中的数据进行元素级别运算的函数. 例如,square函数计算各元素的平方,r ...

  4. python安装numpy、scipy和matplotlib等whl包的方法

    最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...

  5. 深入理解numpy

    一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相 ...

  6. Python Numpy,Pandas基础笔记

    Numpy Numpy是python的一个库.支持维度数组与矩阵计算并提供大量的数学函数库. arr = np.array([[1.2,1.3,1.4],[1.5,1.6,1.7]])#创建ndarr ...

  7. broadcasting Theano vs. Numpy

    broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...

  8. python之numpy

    一.矩阵的拼接合并 列拼接:np.column_stack() >>> import numpy as np >>> a = np.arange(9).reshap ...

  9. win7系统下python安装numpy,matplotlib,scipy和scikit-learn

    1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...

  10. 给numpy矩阵添加一列

    问题的定义: 首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3], ...

随机推荐

  1. ThinikPhp 将数据库模型的增、删、改操作写入日志

    Thinkphp中的模型可以对数据库字段进行验证规则的设置和设置一些字段的默认值(比如字段为当前时间)以及在操作数据时的的一些回调方法等   基本上每一个模型都需要设置一些验证规则和字段默认值的设置, ...

  2. AutoMapperExtension

    using System; using System.Collections.Generic; using System.Linq; using AutoMapper; using System.Co ...

  3. OpenCV 学习笔记 04 深度估计与分割

    本章节主要是使用深度摄像头的数据来识别前景区和背景区,这样就可以分别对前景和背景做不同的处理. 1 创建模块

  4. 经典的sql语句,将返回结果合并为一个字符串

    declare @ts varchar(999) select @ts=isnull(@ts+',','')+name from sysobjects where xtype='U' select @ ...

  5. 在 Redis 上实现的分布式锁

    由于近排很忙,忙各种事情,还有工作上的项目,已经超过一个月没写博客了,确实有点惭愧啊,没能每天或者至少每周坚持写一篇博客.这一个月里面接触到很多新知识,同时也遇到很多技术上的难点,在这我将对每一个有用 ...

  6. PSR PHP业界规范

    0x0 大型项目的问题 随着项目越来越大,参与的人数越来越多,代码变得越来越不可维护了. 每个人都给项目带来自己的风格,所以这时就需要大家采用一个统一的标准. 0x1 解决办法 于是顶尖的PHPer们 ...

  7. 【iCore1S 双核心板_FPGA】例程四:TCL脚本实验——配置引脚

    代码包下载: 链接:http://pan.baidu.com/s/1o8G62im 密码:j0iq

  8. 【Java】移动JDK路径后,修改环境变量不生效 Error: could not open `C:\Program Files\Java\jre1.8.0_131\lib\amd64\jvm.cfg'

    场景: JDK原先装在C盘的,现在移动到了D盘,并在环境变量修改了%JAVA_HOME%的新路径,但是CMD中输入java后依然报错. Error: could not open `C:\Progra ...

  9. java中的数据加密2 对称加密

    对称加密 也叫私钥加密.   采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密. 需要对加密和解密使用相同密钥的加密算法.由于其速度快,对 ...

  10. 嵌入式开发之hi3519---PCIE DMA

    http://blog.csdn.net/abcamus/article/details/76167747 大话pcie dma http://blog.csdn.net/qingfengtsing/ ...