什么是ML.NET?

ML.NET是由微软创建,为.NET开发者准备的开源机器学习框架。它是跨平台的,可以在macOS,Linux及Windows上运行。

机器学习管道

ML.NET通过管道(pipeline)方式组合机器学习过程。整个管道分为以下四个部分:

  • Load Data 加载数据
  • Transform Data 转换数据
  • Choose Algorithm 选择算法
  • Train Model 训练模型

示例

建立一个控制台项目。

dotnet new console -o myApp
cd myApp

添加ML.NET类库包。

dotnet add package Microsoft.ML

在工程文件夹下创建一个名为iris-data.txt的文本文件,内容如下:

5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica

粘贴下面的代码到Program文件中。

using System;
using Microsoft.ML;
using Microsoft.ML.Runtime.Api;
using Microsoft.ML.Runtime.Data; namespace myApp
{
class Program
{
public class IrisData
{
public float SepalLength;
public float SepalWidth;
public float PetalLength;
public float PetalWidth;
public string Label;
} public class IrisPrediction
{
[ColumnName("PredictedLabel")]
public string PredictedLabels;
} static void Main(string[] args)
{
var mlContext = new MLContext(); string dataPath = "iris-data.txt";
var reader = mlContext.Data.TextReader(new TextLoader.Arguments()
{
Separator = ",",
HasHeader = true,
Column = new[]
{
new TextLoader.Column("SepalLength", DataKind.R4, 0),
new TextLoader.Column("SepalWidth", DataKind.R4, 1),
new TextLoader.Column("PetalLength", DataKind.R4, 2),
new TextLoader.Column("PetalWidth", DataKind.R4, 3),
new TextLoader.Column("Label", DataKind.Text, 4)
}
}); IDataView trainingDataView = reader.Read(new MultiFileSource(dataPath)); var pipeline = mlContext.Transforms.Categorical.MapValueToKey("Label")
.Append(mlContext.Transforms.Concatenate("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth"))
.Append(mlContext.MulticlassClassification.Trainers.StochasticDualCoordinateAscent(label: "Label", features: "Features"))
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); var model = pipeline.Fit(trainingDataView); var prediction = model.MakePredictionFunction<IrisData, IrisPrediction>(mlContext).Predict(
new IrisData()
{
SepalLength = 3.3f,
SepalWidth = 1.6f,
PetalLength = 0.2f,
PetalWidth = 5.1f,
}); Console.WriteLine($"Predicted flower type is: {prediction.PredictedLabels}");
}
}
}

通过dotnet run命令运行程序后可得到预测结果。

Predicted flower type is: Iris-virginica

解例

例子中定义了两个类,IrisData与IrisPrediction。IrisData类是用于训练的数据结构,而IrisPrediction则用于预测。

MLContext类用于定义ML.NET的上下文(context),可以理解为是它的运行时环境。

接着,创建一个TextReader,用于读取数据集文件,可以看到其中规定了读取的格式。这里即是机器学习管道的第一步。

第二步,转换IrisData类中Label属性的类型,使之成为数值类型,因为只有数值类型的数据才能在模型训练中被使用。再将SepalLength,SepalWidth,PetalLength与PetalWidth合并为一,统合为数据集的Features。

第三步,为训练选择合适的算法,并传入标签(Label)和特征(Features)。

第四步,训练模型。

完成模型后,就可以用它进行预测了。因为最后预测的结果是字符串类型,所以在上述第三步的操作后有必要加上转换操作,把结果从数值类型再转回字符串类型。

ML.NET速览的更多相关文章

  1. GitHub 热点速览 Vol.18:刷 LeetCode 的正确姿势

    作者:HelloGitHub-小鱼干 摘要:找对路子,事半功倍,正如本周 GitHub Trending #刷 LeetCode# 主题想表达的那般,正确的学习姿势方能让人走得更远,走进大厂

  2. 用 Java 写个塔防游戏「GitHub 热点速览 v.21.37」

    作者:HelloGitHub-小鱼干 本周 GitHub Trending 的主题词是:多语言.本周特推的 C 语言教程是大家都知道的阮一峰编写的,想必和他之前的技术文章类似,能起到科普作用.再来时 ...

  3. 解放生产力「GitHub 热点速览 v.21.51」

    作者:HelloGitHub-小鱼干 解放生产力一直都是我们共同追求的目标,能在摸鱼的空闲把赚了.而大部分好用的工具便能很好地解放我们的生产力,比如本周特推 RedisJSON 不用对 JSON 做哈 ...

  4. 上半年最中意的 GitHub 更新「GitHub 热点速览 v.22.21」

    2022 年的热点速览加入 GitHub 产品动态之后,这次的图片显示是最得我意的,因为可以提升图片查看人的看片体验.而 GitHub 社区方面,GitHub 官方发布了部分开源项目的新版本.与此同时 ...

  5. 专注效率提升「GitHub 热点速览 v.22.36」

    本周最大的 GitHub 事件无疑是国内多家自媒体报道过的,GitHub 官方或将下架 GitHub Trending 页面.作为 GitHub Trending 长期用户,本周也是找到了实用且提升效 ...

  6. 不可错过的效能利器「GitHub 热点速览 v.22.39」

    如果你是一名前端工程师且维护着多个网站,不妨试试本周榜上有名的 HTML-first 的 Qwik,提升网站访问速度只用一招.除了提升网站加载速度的 Qwik,本周周榜上榜的 Whisper 也是一个 ...

  7. .NET平台开源项目速览(17)FluentConsole让你的控制台酷起来

    从该系列的第一篇文章 .NET平台开源项目速览(1)SharpConfig配置文件读写组件 开始,不知不觉已经到第17篇了.每一次我们都是介绍一个小巧甚至微不足道的.NET平台的开源软件,或者学习,或 ...

  8. .NET平台开源项目速览(15)文档数据库RavenDB-介绍与初体验

    不知不觉,“.NET平台开源项目速览“系列文章已经15篇了,每一篇都非常受欢迎,可能技术水平不高,但足够入门了.虽然工作很忙,但还是会抽空把自己知道的,已经平时遇到的好的开源项目分享出来.今天就给大家 ...

  9. .NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

    Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器 ...

随机推荐

  1. RabbitMQ ——“Hello World”

    介绍 RabbitMQ是一个消息实体服务(broker):它接收及转发消息.你可以把它想象成一个邮局:当你把你想要寄送的邮件放进邮箱里时,你能够确信邮局的派送员最终会把你的这封邮局送到这信的收件者手中 ...

  2. Oracle voting文件的管理

    在12c中,不再支持使用dd命令进行voting disk文件的备份和恢复 投票文件的管理需要OCR文件正常工作.在删除.添加.替换或者还原voting文件之前,使用ocrcheck检查ocr文件的状 ...

  3. [ci]jenkins构建容器项目java-helloworld-非docker plugin模式

    栗子思路说明: 不使用任何docker plugin 使用jenkins server本地(含mvn环境)构建,无jenkins slave jenkins server本地构建的war包,推送dep ...

  4. TCP中的KeepAlive与HTTP中的Keep-Alive

    KeepAlive 与 Keep-Alive 前言 昨天被问到了HTTP中Keep-Alive的概念,看名字我只知道是保持连接用的,但是对于他怎么结束连接,为什么要用他这些就不是很清楚了,今天查了一下 ...

  5. 腾讯云快速完成python3.6开发环境搭建与django应用部署

    [本文出自天外归云的博客园] 部署python3.6.5 腾讯云服务器安装python3竟然要3个多小时!而且一度速度为0…… 于是网查据说是腾讯云服务器连python官网缓慢导致的,所以想找个国内的 ...

  6. [译]Godot 引擎 GDNative 架构初探

    GDNative的架构从最早叫"DLScript"的时候到目前为止已经发生了很大的变化.随着Godot 3.0版本接近最终发布以及API越来越稳定,是时候对GDNative目前的形 ...

  7. Sphinx 2.2.11-release reference manual

    1. Introduction 1.1. About 1.2. Sphinx features 1.3. Where to get Sphinx 1.4. License 1.5. Credits 1 ...

  8. php 无限分类 树形数据 格式化

    测试demo ------------------------------------------------------------------------------------ <?php ...

  9. 环回接口---loopback

    尽管在网上查了不少资料,但依然未找到全面的解释,最近给县局作岗位认证培时, 忽然间想通了些问题,很多疑问迎刃而解.以下是我对环回地址及环回接口的一些认识,供大家参考交流:一.环回接口为了标识和管理网络 ...

  10. Java如何创建多线程服务器?

    在Java编程中,如何创建多线程服务器? 以下示例演示如何使用ServerSocket类的MultiThreadServer(socketname)方法和Socket类的ssock.accept()方 ...