Towards real-time unsupervised monocular depth estimation on CPU

Matteo Poggi , Filippo Aleotti , Fabio Tosi , Stefano Mattoccia

在CPU上进行实时无监督单目深度估计

Abstract— Unsupervised depth estimation from a single image is a very attractive technique with several implications in robotic, autonomous navigation, augmented reality and so on.This topic represents a very challenging task and the advent of deep learning enabled to tackle this problem with excellent results. However, these architectures are extremely deep and complex. Thus, real-time performance can be achieved only by leveraging power-hungry GPUs that do not allow to infer depth maps in application fields characterized by low-power constraints. To tackle this issue, in this paper we propose a novel architecture capable to quickly infer an accurate depth map on a CPU, even of an embedded system, using a pyramid of features extracted from a single input image. Similarly to state-of-the-art, we train our network in an unsupervised manner casting depth estimation as an image reconstruction problem.Extensive experimental results on the KITTI dataset show that compared to the top performing approach our network has similar accuracy but a much lower complexity (about 6% of parameters) enabling to infer a depth map for a KITTI image in about 1.7 s on the Raspberry Pi 3 and at more than 8 Hz on a standard CPU. Moreover, by trading accuracy for efficiency, our network allows to infer maps at about 2 Hz and 40 Hz respectively, still being more accurate than most state-of-the-art slower methods. To the best of our knowledge, it is the first method enabling such performance on CPUs paving the way for effective deployment of unsupervised monocular depth estimation even on embedded systems.

单个图像的无监督深度估计是一种非常有吸引力的技术,在机器人,自主导航,增强现实等方面具有多种意义。本主题代表了一项非常具有挑战性的任务,深度学习的出现使得能够以优异的成绩解决这一问题。但是,这些架构非常深刻和复杂。 因此,仅通过利用耗电量大的GPU可以实现实时性能,所述GPU不允许在以低功率约束为特征的应用领域中推断深度图。为了解决这个问题,在本文中,我们提出了一种新颖的架构,能够使用从单个输入图像中提取的特征金字塔,在CPU甚至是嵌入式系统上快速推断出精确的深度图。与现有技术类似,我们以无人监督的方式训练我们的网络,将深度估计作为图像重建问题。此外,通过交易效率的准确性,我们的网络允许分别推断大约2 Hz和40 Hz的地图,仍然比大多数最先进的慢速方法更准确。据我们所知,这是第一种在CPU上实现这种性能的方法,即使在嵌入式系统上也能为有效部署无监督单眼深度估计铺平道路。

泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU的更多相关文章

  1. 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition

    Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...

  2. 泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping

    张宁  GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping GEN-SLAM  - 单 ...

  3. 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

    作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...

  4. 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking

    Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...

  5. 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning

    张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...

  6. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

  7. 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators

    Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...

  8. 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization

    Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...

  9. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

随机推荐

  1. html元素不可见的三种方式

    html中使元素不可见有三种方法: 使用hidden属性 使用style中的display=none 使用style中的visibility=false 显然,使元素不可见有两类方式: 元素彻底不可见 ...

  2. linux popen()与system()的区别

    linux popen()与system()的区别 popen() 可以在调用程序和POSIX shell /usr/bin/sh 要执行的命令之间创建一个管道(请参阅sh-posix(1) ). p ...

  3. 老司机在zabbix上的一次翻车

    [前言] 自以为是zabbix的老司机了,没有想到今天翻车了! 一般人出错了都可以找到一个借口.我就不一样啦,我感觉我可以找两个1): 针对官方文档 给出的操作步骤没有经过深入的思考 2): 今天没有 ...

  4. Unity3d中的属性(Attributes)整理

    Attributes属性属于U3D的RunTimeClass,所以加上以下的命名空间是必须的了.其它倒没什么需要注意的.本文将所有运行属性过一遍罢了. using UnityEngine; using ...

  5. 测试覆盖率工具:EclEmma

    测试覆盖率工具:EclEmma 2016-08-26 目录 1 测试覆盖率实现技术2 EclEmma介绍3 EclEmma测试覆盖率指标4 EclEmma安装5 示例项目介绍  5.1 创建项目  5 ...

  6. Redis之AOF重写及其实现原理

    Reference: https://blog.csdn.net/hezhiqiang1314/article/details/69396887 AOF 重写AOF 持久化是通过保存被执行的写命令来记 ...

  7. ORA-03297: 文件包含在请求的 RESIZE 值以外使用的数据

    本文中的45,对应 修改数据文件大小 里面的45 1.移动表前先对表空间做整理 alter tablespace data_cis_test coalesce; 2.在dba_extents找到与ID ...

  8. 项目中遇到的IE8浏览器访问页面过慢问题

    我目前所做的项目,由于一些控件的特殊需求,建议客户使用IE8浏览器,在测试一段时间之后,客户突然提出,IE8访问我们的系统时,界面加载非常缓慢.排查过服务器性能.网络连接等情况之后,在360浏览器访问 ...

  9. Git -- 搭建git服务器

    在远程仓库一节中,我们讲了远程仓库实际上和本地仓库没啥不同,纯粹为了7x24小时开机并交换大家的修改. GitHub就是一个免费托管开源代码的远程仓库.但是对于某些视源代码如生命的商业公司来说,既不想 ...

  10. UIInterfaceOrientation over iOS6 (应用旋转屏幕)

      typedef NS_ENUM(NSInteger, UIInterfaceOrientation) { UIInterfaceOrientationUnknown = UIDeviceOrien ...