泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU
Towards real-time unsupervised monocular depth estimation on CPU
Matteo Poggi , Filippo Aleotti , Fabio Tosi , Stefano Mattoccia
在CPU上进行实时无监督单目深度估计
Abstract— Unsupervised depth estimation from a single image is a very attractive technique with several implications in robotic, autonomous navigation, augmented reality and so on.This topic represents a very challenging task and the advent of deep learning enabled to tackle this problem with excellent results. However, these architectures are extremely deep and complex. Thus, real-time performance can be achieved only by leveraging power-hungry GPUs that do not allow to infer depth maps in application fields characterized by low-power constraints. To tackle this issue, in this paper we propose a novel architecture capable to quickly infer an accurate depth map on a CPU, even of an embedded system, using a pyramid of features extracted from a single input image. Similarly to state-of-the-art, we train our network in an unsupervised manner casting depth estimation as an image reconstruction problem.Extensive experimental results on the KITTI dataset show that compared to the top performing approach our network has similar accuracy but a much lower complexity (about 6% of parameters) enabling to infer a depth map for a KITTI image in about 1.7 s on the Raspberry Pi 3 and at more than 8 Hz on a standard CPU. Moreover, by trading accuracy for efficiency, our network allows to infer maps at about 2 Hz and 40 Hz respectively, still being more accurate than most state-of-the-art slower methods. To the best of our knowledge, it is the first method enabling such performance on CPUs paving the way for effective deployment of unsupervised monocular depth estimation even on embedded systems.
单个图像的无监督深度估计是一种非常有吸引力的技术,在机器人,自主导航,增强现实等方面具有多种意义。本主题代表了一项非常具有挑战性的任务,深度学习的出现使得能够以优异的成绩解决这一问题。但是,这些架构非常深刻和复杂。 因此,仅通过利用耗电量大的GPU可以实现实时性能,所述GPU不允许在以低功率约束为特征的应用领域中推断深度图。为了解决这个问题,在本文中,我们提出了一种新颖的架构,能够使用从单个输入图像中提取的特征金字塔,在CPU甚至是嵌入式系统上快速推断出精确的深度图。与现有技术类似,我们以无人监督的方式训练我们的网络,将深度估计作为图像重建问题。此外,通过交易效率的准确性,我们的网络允许分别推断大约2 Hz和40 Hz的地图,仍然比大多数最先进的慢速方法更准确。据我们所知,这是第一种在CPU上实现这种性能的方法,即使在嵌入式系统上也能为有效部署无监督单眼深度估计铺平道路。
泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU的更多相关文章
- 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition
Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...
- 泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping
张宁 GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping GEN-SLAM - 单 ...
- 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...
- 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...
- 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning
张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...
- 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps
张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker, Maximilian Durner, Ra ...
- 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators
Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...
- 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization
Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...
- 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms
Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...
随机推荐
- M1 卡技术规范
射频卡简单来讲就是卡的一种工作方式,通过感应的方式来工作,也能够把全部的感应卡都统称为射频卡. IC卡的范围比較广.芯片外露的接触式IC卡.芯片内置的感应式IC卡和双界面IC卡都可统称为IC卡.IC卡 ...
- excel随机函数
=D7+RAND()*(8000-4250) 含义: 1.在D7数值的基础上,随机加一个数值,该数值的随机范围为4250——8000. 2.注意8000和4250要反着写
- WEBAPI 的简单示例
一.webapi 1.在webapiconfig中移除xml的返回格式,返回格式就自动使用Json格式 config.Formatters.Remove(config.Formatters.XmlFo ...
- Django-基础-2-ORM
参考文章: http://www.cnblogs.com/haiyan123/p/7732190.html https://www.cnblogs.com/liuqingzheng/articles/ ...
- [docker]docker自带的overlay网络实战
overlay网络实战 n3启动consul docker run -d -p 8500:8500 -h consul --name consul progrium/consul -server -b ...
- 【Unity】UGUI无法修改UI元素的Pivot锚点位置
如下图,要点击切换左边的Toggle按钮变为Pivot才可以编辑Pivot! 参考: https://answers.unity.com/questions/871238/cant-change- ...
- Java知多少(39)interface接口
在抽象类中,可以包含一个或多个抽象方法:但在接口(interface)中,所有的方法必须都是抽象的,不能有方法体,它比抽象类更加“抽象”. 接口使用 interface 关键字来声明,可以看做是一种特 ...
- Java知多少(61)线程优先级
线程优先级被线程调度用来判定何时每个线程允许运行.理论上,优先级高的线程比优先级低的线程获得更多的CPU时间.实际上,线程获得的CPU时间通常由包括优先级在内的多个因素决定(例如,一个实行多任务处理的 ...
- IDEA 最新版破解教程图解
一.打开此网站 http://idea.lanyus.com 并下载红色框框内的包 二.拷贝到idea 安装目录bin文件下 三.编辑 idea64.exe.vmoptions 和 idea.exe. ...
- Java8学习笔记(十)--自定义收集器
前言 以前写过Java8中的自定义收集器,当时只是在文章末尾放了个例子,觉得基本用法挺简单,而且有些东西没搞懂(比如combiner方法到底做什么的),没有专门写,过了一段时间又忘了,所以,即使还是没 ...