泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU
Towards real-time unsupervised monocular depth estimation on CPU
Matteo Poggi , Filippo Aleotti , Fabio Tosi , Stefano Mattoccia
在CPU上进行实时无监督单目深度估计
Abstract— Unsupervised depth estimation from a single image is a very attractive technique with several implications in robotic, autonomous navigation, augmented reality and so on.This topic represents a very challenging task and the advent of deep learning enabled to tackle this problem with excellent results. However, these architectures are extremely deep and complex. Thus, real-time performance can be achieved only by leveraging power-hungry GPUs that do not allow to infer depth maps in application fields characterized by low-power constraints. To tackle this issue, in this paper we propose a novel architecture capable to quickly infer an accurate depth map on a CPU, even of an embedded system, using a pyramid of features extracted from a single input image. Similarly to state-of-the-art, we train our network in an unsupervised manner casting depth estimation as an image reconstruction problem.Extensive experimental results on the KITTI dataset show that compared to the top performing approach our network has similar accuracy but a much lower complexity (about 6% of parameters) enabling to infer a depth map for a KITTI image in about 1.7 s on the Raspberry Pi 3 and at more than 8 Hz on a standard CPU. Moreover, by trading accuracy for efficiency, our network allows to infer maps at about 2 Hz and 40 Hz respectively, still being more accurate than most state-of-the-art slower methods. To the best of our knowledge, it is the first method enabling such performance on CPUs paving the way for effective deployment of unsupervised monocular depth estimation even on embedded systems.
单个图像的无监督深度估计是一种非常有吸引力的技术,在机器人,自主导航,增强现实等方面具有多种意义。本主题代表了一项非常具有挑战性的任务,深度学习的出现使得能够以优异的成绩解决这一问题。但是,这些架构非常深刻和复杂。 因此,仅通过利用耗电量大的GPU可以实现实时性能,所述GPU不允许在以低功率约束为特征的应用领域中推断深度图。为了解决这个问题,在本文中,我们提出了一种新颖的架构,能够使用从单个输入图像中提取的特征金字塔,在CPU甚至是嵌入式系统上快速推断出精确的深度图。与现有技术类似,我们以无人监督的方式训练我们的网络,将深度估计作为图像重建问题。此外,通过交易效率的准确性,我们的网络允许分别推断大约2 Hz和40 Hz的地图,仍然比大多数最先进的慢速方法更准确。据我们所知,这是第一种在CPU上实现这种性能的方法,即使在嵌入式系统上也能为有效部署无监督单眼深度估计铺平道路。
泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU的更多相关文章
- 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition
Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...
- 泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping
张宁 GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping GEN-SLAM - 单 ...
- 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...
- 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...
- 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning
张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...
- 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps
张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker, Maximilian Durner, Ra ...
- 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators
Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...
- 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization
Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...
- 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms
Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...
随机推荐
- JAVA 自定义注解在自动化测试中的使用
在UI自动化测试中,相信很多人都喜欢用所谓的PO模式,其中的P,也就是page的意思,于是乎,在脚本里,或者在其它的page里,会要new很多的page对象,这样很麻烦,前面我们也讲到了注解的使用,很 ...
- 深入浅出理解c++虚函数
深入浅出理解c++虚函数 记得几个月前看过C++虚函数的问题,当时其实就看懂了,最近笔试中遇到了虚函数竟然不太确定,所以还是理解的不深刻,所以想通过这篇文章来巩固下. 装逼一刻: 最近,本人思想发 ...
- Android Studio updating indices 一直刷新和闪烁
Android Studio 更新到了 3.1.3 版本,在导入了工程以后,一直出现了 updating indices 刷新的情况,造成闪烁,在切换到其他视图以后,Android Studio 会一 ...
- Atitit 常见每日流程日程日常工作.docx v4
Atitit 常见每日流程日程日常工作.docx v4 ----早晨 签到 晨会,每天或者隔天 每日计划( )项目计划,日常计划等. mailbox读取检查 每日趋势 推库 -----下午 签退 每日 ...
- Android Gallery实现3D相册(附效果图+Demo源码)
今天因为要做一个设置开机画面的功能,主要是让用户可以设置自己的开机画面,应用层需要做让用户选择开机画面图片的功能.所以需要做一个简单的图片浏览选择程序.最后选用Gallery作为基本控件.加入了一些炫 ...
- 【iCore4 双核心板_FPGA】例程七:状态机实验——状态机使用
实验现象:按键每按下一次,三色LED改变一次状态. 核心代码: //--------------------module_rst_n---------------------------// modu ...
- Java多线程系列——信号量:Semaphore
简介 信号量为多线程协作提供了更为强大的控制方法.也可以说,信号量是对锁的扩展.无论是内部锁 synchronized 还是重入锁 ReentrantLock,一次都只允许一个线程访问一个资源,而信号 ...
- Active Directory Authentication in ASP.NET MVC 5 with Forms Authentication and Group-Based Authorization
I know that blog post title is sure a mouth-full, but it describes the whole problem I was trying to ...
- DES ECB 模式 JAVA PHP C# 实现 加密 解密 兼容
版本一: JAVA: import org.slf4j.Logger; import org.slf4j.LoggerFactory; import sun.misc.BASE64Decoder; i ...
- Window应急响应(三):勒索病毒
0x00 前言 勒索病毒,是一种新型电脑病毒,主要以邮件.程序木马.网页挂马的形式进行传播.该病毒性质恶劣.危害极大,一旦感染将给用户带来无法估量的损失.这种病毒利用各种加密算法对文件进行加密,被 ...