Lifting the Stone

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon. 
 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line. 
 
Output
Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway. 
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
 
Source
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-8
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=1e6+,inf=1e9+;
const LL INF=1e18+,mod=1e9+; struct Point
{
double x, y ;
} p[M];
int n ;
double Area( Point p0, Point p1, Point p2 )
{
double area = ;
area = p0.x * p1.y + p1.x * p2.y + p2.x * p0.y - p1.x * p0.y - p2.x * p1.y - p0.x * p2.y;// 求三角形面积公式
return area / ; //另外在求解的过程中,不需要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。
}
pair<double,double> xjhz()
{
double sum_x = ,sum_y = ,sum_area = ;
for ( int i = ; i < n ; i++ )
{
double area = Area(p[],p[i-],p[i]) ;
sum_area += area ;
sum_x += (p[].x + p[i-].x + p[i].x) * area ;
sum_y += (p[].y + p[i-].y + p[i].y) * area ;
}
return make_pair(sum_x / sum_area / , sum_y / sum_area / ) ;
}
int main ()
{
int T;
scanf ( "%d", &T ) ;
while ( T -- )
{
scanf ( "%d", &n ) ;
for(int i=; i<n; i++)
scanf ( "%lf%lf", &p[i].x, &p[i].y ) ;
pair<double,double> ans=xjhz();
printf("%.2f %.2f\n",ans.first,ans.second);
}
return ;
}

hdu 1115 Lifting the Stone 多边形的重心的更多相关文章

  1. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  3. hdu 1115 Lifting the Stone (数学几何)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. poj 1115 Lifting the Stone 计算多边形的中心

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. Lifting the Stone(多边形重心)

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  6. POJ1385 Lifting the Stone 多边形重心

    POJ1385 给定n个顶点 顺序连成多边形 求重心 n<=1e+6 比较裸的重心问题 没有特别数据 由于答案保留两位小数四舍五入 需要+0.0005消除误差 #include<iostr ...

  7. Hdoj 1115.Lifting the Stone 题解

    Problem Description There are many secret openings in the floor which are covered by a big heavy sto ...

  8. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  9. (hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)

    题目: Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. 第一周java测验感想

     在正式开学的第一周,建民老师就给我们来了一个下马威.我本身的编程基础比较差,不知道怎么去想,怎么去一步步的去完成这么一个工程.所以我在星期四的下午十分的痛苦…因为不知道怎么搞嘛.尽管在暑假的时候看了 ...

  2. 动手动脑-Java的方法重载

    例: Using overloaded methods public class MethodOverload {  public static void main(String[] args) {  ...

  3. Redis慢查询日志学习功能

    慢查询日志 什么是SLOW LOG? Slow log是Redis用来记录查询执行时间超过给定时长的命令请求的日志系统.查询执行时间指的是不包括像客户端响应(talking).发送回复等IO操作,而单 ...

  4. Django框架----模板语法

    Django模板系统 官方文档 一.什么是模板? 只要是在html里面有模板语法就不是html文件了,这样的文件就叫做模板. 二.模板语法分类 只需要记两种特殊符号: {{  }}和 {% %} 变量 ...

  5. sql server 触发器的简单用法

    触发器  -- 一下写的都是我对触发器的理解 当在执行insert . delete . 等操作的时候 随便要做一些额外的操作, 比如在添加的时候就会将新添加的数据存到inserted表中 写个实例 ...

  6. 第三节 深入JavaScript

    函数的返回值:(把函数体内的数据传出到函数体外) 什么是函数的返回值:函数执行结果.可以没有返回值 一种函数应该只返回一种类型的值 函数传参:(与函数返回值相反,把外面数据传入函数体内) 可变参(不定 ...

  7. centos7开放及查看端口

    centos7中的防火墙改成了firewall,使用iptables无作用,开放端口的方法如下: firewall-cmd --zone=public --add-port=80/tcp --perm ...

  8. ORA-00600: internal error code, arguments: [13030], [20]一例解决

    两年没有接触oracle了,中午,一环境update from的时候出现ORA-00600: internal error code, arguments: [13030], [20]异常,经查,官网 ...

  9. Redis热点Key发现及常见解决方案!

    一.热点Key问题产生的原因 1.用户消费的数据远大于生产的数据(热卖商品.热点新闻.热点评论.明星直播). 在日常工作生活中一些突发的的事件,例如:双十一期间某些热门商品的降价促销,当这其中的某一件 ...

  10. 阶段性总结(2017 June 10 - 2017 July 10)

    综述 我在全面剖析了自身的特质以后,针对于工程技术领域的经验丰富优势.科学研究领域的理论薄弱劣势.我制定了全面夯实科学研究理论基础的学习计划.全面提高效率抓大放小的精力分配原则. 执行成果 线性代数( ...