Introduction to dnorm, pnorm, qnorm, and rnorm for new biostatisticians
原文:Introduction todnorm,pnorm,qnorm, andrnormfor new biostatisticians
Today I was in Dan’s office hours and someone asked, “what is the equivalent in R of the back of the stats textbook table of probabilities and their corresponding Z-scores?” (This is an example of the kind of table the student was talking about.) This question indicated to me that although we’ve been asked to use some of the distribution functions in past homeworks, there may be some misunderstanding about how these functions work.
Right now I’m going to focus on the functions for the normal distribution, but you can find a list of all distribution functions by typing help(Distributions)
into your R console.
dnorm
As we all know the probability density for the normal distribution is:
The function dnorm
returns the value of the probability density function for the normal distribution given parameters for xx, μμ, and σσ. Some examples of using dnorm
are below:
# This is a comment. Anything I write after the octothorpe is not executed.
# This is the same as computing the pdf of the normal with x = 0, mu = 0 and
# sigma = 0. The dnorm function takes three main arguments, as do all of the
# *norm functions in R.
dnorm(0, mean = 0, sd = 1)
## [1] 0.3989423
# The line of code below does the same thing as the same as the line of code
# above, since mean = 0 and sd = 0 are the default arguments for the dnorm
# function.
dnorm(0)
## [1] 0.3989423
# Another exmaple of dnorm where parameters have been changed.
dnorm(2, mean = 5, sd = 3)
## [1] 0.08065691
Although xx represents the independent variable of the pdf for the normal distribution, it’s also useful to think of xx as a Z-score. Let me show you what I mean by graphing the pdf of the normal distribution with dnorm
.
# First I'll make a vector of Z-scores
z_scores <- seq(-3, 3, by = .1)
# Let's print the vector
z_scores
## [1] -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7
## [15] -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3
## [29] -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
## [43] 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
## [57] 2.6 2.7 2.8 2.9 3.0
# Let's make a vector of the values the function takes given those Z-scores.
# Remember for dnorm the default value for mean is 0 and for sd is 1.
dvalues <- dnorm(z_scores)
# Let's examine those values
dvalues
## [1] 0.004431848 0.005952532 0.007915452 0.010420935 0.013582969
## [6] 0.017528300 0.022394530 0.028327038 0.035474593 0.043983596
## [11] 0.053990967 0.065615815 0.078950158 0.094049077 0.110920835
## [16] 0.129517596 0.149727466 0.171368592 0.194186055 0.217852177
## [21] 0.241970725 0.266085250 0.289691553 0.312253933 0.333224603
## [26] 0.352065327 0.368270140 0.381387815 0.391042694 0.396952547
## [31] 0.398942280 0.396952547 0.391042694 0.381387815 0.368270140
## [36] 0.352065327 0.333224603 0.312253933 0.289691553 0.266085250
## [41] 0.241970725 0.217852177 0.194186055 0.171368592 0.149727466
## [46] 0.129517596 0.110920835 0.094049077 0.078950158 0.065615815
## [51] 0.053990967 0.043983596 0.035474593 0.028327038 0.022394530
## [56] 0.017528300 0.013582969 0.010420935 0.007915452 0.005952532
## [61] 0.004431848
# Now we'll plot these values
plot(dvalues, # Plot where y = values and x = index of the value in the vector
xaxt = "n", # Don't label the x-axis
type = "l", # Make it a line plot
main = "pdf of the Standard Normal",
xlab= "Z-score")
# These commands label the x-axis
axis(1, at=which(dvalues == dnorm(0)), labels=c(0))
axis(1, at=which(dvalues == dnorm(1)), labels=c(-1, 1))
axis(1, at=which(dvalues == dnorm(2)), labels=c(-2, 2))
As you can see, dnorm
will give us the “height” of the pdf of the normal distribution at whatever Z-score we provide as an argument to dnorm
.
pnorm
The function pnorm
returns the integral from −∞−∞ to qq of the pdf of the normal distribution where qq is a Z-score. Try to guess the value of pnorm(0)
. (pnorm
has the same default mean
and sd
arguments as dnorm
).
# To be clear about the arguments in this example:
# q = 0, mean = 0, sd = 1
pnorm(0)
## [1] 0.5
The pnorm
function also takes the argument lower.tail
. If lower.tail
is set equal to FALSE
then pnorm
returns the integral from qq to ∞∞ of the pdf of the normal distribution. Note that pnorm(q)
is the same as 1-pnorm(q, lower.tail = FALSE)
pnorm(2)
## [1] 0.9772499
pnorm(2, mean = 5, sd = 3)
## [1] 0.1586553
pnorm(2, mean = 5, sd = 3, lower.tail = FALSE)
## [1] 0.8413447
1 - pnorm(2, mean = 5, sd = 3, lower.tail = FALSE)
## [1] 0.1586553
pnorm
is the function that replaces the table of probabilites and Z-scores at the back of the statistics textbook. Let’s take our vector of Z-scores from before (z_scores
) and compute a new vector of “probability masses” using pnorm
. Any guesses about what this plot will look like?
pvalues <- pnorm(z_scores)
# Now we'll plot these values
plot(pvalues, # Plot where y = values and x = index of the value in the vector
xaxt = "n", # Don't label the x-axis
type = "l", # Make it a line plot
main = "cdf of the Standard Normal",
xlab= "Quantiles",
ylab="Probability Density")
# These commands label the x-axis
axis(1, at=which(pvalues == pnorm(-2)), labels=round(pnorm(-2), 2))
axis(1, at=which(pvalues == pnorm(-1)), labels=round(pnorm(-1), 2))
axis(1, at=which(pvalues == pnorm(0)), labels=c(.5))
axis(1, at=which(pvalues == pnorm(1)), labels=round(pnorm(1), 2))
axis(1, at=which(pvalues == pnorm(2)), labels=round(pnorm(2), 2))
It’s the plot of the cumulative distribution function of the normal distribution! Isn’t that neat?
qnorm
The qnorm
function is simply the inverse of the cdf, which you can also think of as the inverse of pnorm
! You can use qnorm
to determine the answer to the question: What is the Z-score of the pthpth quantile of the normal distribution?
# What is the Z-score of the 50th quantile of the normal distribution?
qnorm(.5)
## [1] 0
# What is the Z-score of the 96th quantile of the normal distribution?
qnorm(.96)
## [1] 1.750686
# What is the Z-score of the 99th quantile of the normal distribution?
qnorm(.99)
## [1] 2.326348
# They're truly inverses!
pnorm(qnorm(0))
## [1] 0
qnorm(pnorm(0))
## [1] 0
Let’s plot qnorm
and pnorm
next to each other to further illustrate the fact they they are inverses.
# This is for getting two graphs next to each other
oldpar <- par()
par(mfrow=c(1,2))
# Let's make a vector of quantiles: from 0 to 1 by increments of .05
quantiles <- seq(0, 1, by = .05)
quantiles
## [1] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
## [15] 0.70 0.75 0.80 0.85 0.90 0.95 1.00
# Now we'll find the Z-score at each quantile
qvalues <- qnorm(quantiles)
qvalues
## [1] -Inf -1.6448536 -1.2815516 -1.0364334 -0.8416212 -0.6744898
## [7] -0.5244005 -0.3853205 -0.2533471 -0.1256613 0.0000000 0.1256613
## [13] 0.2533471 0.3853205 0.5244005 0.6744898 0.8416212 1.0364334
## [19] 1.2815516 1.6448536 Inf
# Plot the z_scores
plot(qvalues,
type = "l", # We want a line graph
xaxt = "n", # No x-axis
xlab="Probability Density",
ylab="Z-scores")
# Same pnorm plot from before
plot(pvalues, # Plot where y = values and x = index of the value in the vector
xaxt = "n", # Don't label the x-axis
type = "l", # Make it a line plot
main = "cdf of the Standard Normal",
xlab= "Quantiles",
ylab="Probability Density")
# These commands label the x-axis
axis(1, at=which(pvalues == pnorm(-2)), labels=round(pnorm(-2), 2))
axis(1, at=which(pvalues == pnorm(-1)), labels=round(pnorm(-1), 2))
axis(1, at=which(pvalues == pnorm(0)), labels=c(.5))
axis(1, at=which(pvalues == pnorm(1)), labels=round(pnorm(1), 2))
axis(1, at=which(pvalues == pnorm(2)), labels=round(pnorm(2), 2))
# Restore old plotting settings
par(oldpar)
rnorm
If you want to generate a vector of normally distributed random numbers, rnorm
is the function you should use. The first argument n
is the number of numbers you want to generate, followed by the standard mean
and sd
arguments. Let’s illustrate the weak law of large numbers using rnorm
.
# set.seed is a function that takes a number as an argument and sets a seed from
# which random numbers are generated. It's important to set a seed so that your
# code is reproduceable. If you wanted to you could always set your seed to the
# same number. I like to set seeds to the "date" which is really just
# the arithmetic equation "month minus day minus year". So today's seed
# is -2006.
set.seed(10-1-2015)
rnorm(5)
## [1] -0.7197035 -1.4442137 -1.0120381 1.4577066 -0.1212466
# If I set the seed to the same seed again, I'll generate the same vector of
# numbers.
set.seed(10-1-2015)
rnorm(5)
## [1] -0.7197035 -1.4442137 -1.0120381 1.4577066 -0.1212466
# Now onto using rnorm
# Let's generate three different vectors of random numbers from a normal
# distribution
n10 <- rnorm(10, mean = 70, sd = 5)
n100 <- rnorm(100, mean = 70, sd = 5)
n10000 <- rnorm(10000, mean = 70, sd = 5)
# Let's just look at one of the vectors
n10
## [1] 54.70832 72.89000 70.27049 69.16508 72.97937 67.91004 67.77183
## [8] 72.29231 74.33411 63.57151
Which historgram do you think will be most centered around the true mean of 70?
# This is for getting two graphs next to each other
oldpar <- par()
par(mfrow=c(1,3))
# The breaks argument specifies how many bars are in the histogram
hist(n10, breaks = 5)
hist(n100, breaks = 20)
hist(n10000, breaks = 100)
# Restore old plotting settings
par(oldpar)
Closing thoughts
These concepts generally hold true for all the distribution functions built into R. You can learn more about all of the distribution functions by typing help(Distributions)
into the R console. If you have any questions about this demonstration or about R programming please send me an email. If you’d like to change or contribute to this document I welcome pull requests on GitHub. This document and all code contained within is licensed CC0.
Introduction to dnorm, pnorm, qnorm, and rnorm for new biostatisticians的更多相关文章
- 关于R语言中dnorm,pnorm,qnorm,rnorm的用法
dnorm,pnorm,qnorm,rnorm的表达式: 其中x和q是由数值型变量构成的向量,p是由概率构成的向量,n是随机产生的个数 mean是要计算正态分布的均值,缺省值为0,sd是计算正态分布的 ...
- (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...
- R概率分布函数使用小结
记要 今天在计算分类模型自行区间时,用到了R中正太分布的qnorm函数,这里做简单记要,作为备忘. R中自带了很多概率分布的函数,如正太分布,二次分布,卡放分布,t分布等,这些分布的函数都有一个共性, ...
- R语言常用命令集合
help.start()//打开帮助文档 q()//推出函数 ls()//返回处于现在名空间的对象名称 rm()//清楚对象:rm(list=ls())清除所有内存数据 gc()//垃圾回收数据 sq ...
- R中矩阵运算
# 数据产生 # rnorm(n, mean = 0, sd = 1) 正态分布的随机数(r 代表随机,可以替换成dnorm, pnorm, qnorm 作不同计算.r= random = 随机, d ...
- R1-5天
R语言笔记文档 2019.11.24 R语言的安装 工作目录查看与更改 变量的三种赋值 如何查看R语言帮助 ? args 基础数据类型 基本数据类型 因子.数据框.数组.矩阵.列表.向量 2019.1 ...
- R语言:常用函数【转】
数据结构 一.数据管理vector:向量 numeric:数值型向量 logical:逻辑型向量 character:字符型向量list:列表 data.frame:数据框 c:连接为向量或列表len ...
- 简单介绍一下R中的几种统计分布及常用模型
统计学上分布有很多,在R中基本都有描述.因能力有限,我们就挑选几个常用的.比较重要的简单介绍一下每种分布的定义,公式,以及在R中的展示. 统计分布每一种分布有四个函数:d――density(密度函数) ...
- R9—R常用函数分类汇总
数据结构 一.数据管理 vector:向量 numeric:数值型向量 logical:逻辑型向量 character:字符型向量 list:列表 data.frame:数据框 c:连接为向量或列表 ...
随机推荐
- poj 2096 Collecting Bugs - 概率与期望 - 动态规划
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
- 【Python55--爬虫:代理】
一.反爬虫之隐藏 1.网站检查访问的是正常用户还是程序,关键在于User-Agent 1).第一种方法:采用header --修改header(两种方法): --> 在Request之前通过h ...
- 【做题】agc006C - Rabbit Exercise——模型转换
原文链接https://www.cnblogs.com/cly-none/p/9745177.html 题意:数轴上有\(n\)个点,从\(1\)到\(n\)编号.有\(m\)个操作,每次操作给出一个 ...
- Elasticsearch-->Get Started-->Modifying Your Data
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started-modify-data.html Mod ...
- 【Spring Security】三、自定义数据库实现对用户信息和权限信息的管理
一 自定义表结构 这里还是用的mysql数据库,所以pom.xml文件都不用修改.这里只要新建三张表即可,user表.role表.user_role表.其中user用户表,role角色表为保存用户权限 ...
- R read.tabe line 5 did not have 2 elements
R read.tabe line 5 did not have 2 elements Reason: there are special characters such as # in file o ...
- P2504 [HAOI2006]聪明的猴子
思路 最小生成树中最大的边,边权最小 所以这题就变成最小生成树的板子了,跳跃距离大于最大边权的猴子就是可行的 代码 #include <cstdio> #include <algor ...
- P2475 [SCOI2008]斜堆(递归模拟)
思路 可并堆真是一种神奇的东西 不得不说这道题是道好题,虽然并不需要可并堆,但是能加深对可并堆的理解 首先考虑斜堆的性质,斜堆和左偏树相似,有如下的性质 一个节点如果有右子树,就一定有左子树 最后插入 ...
- 深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning)
深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning) 2018-08-09 12:21:33 The video tutorial can ...
- 【C#】委托中的匿名函数与lambda
将方法作为方法的参数 委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递,这种将方法动态地赋给参数的做法,可以避免在程序中大量使用If-Else(Switch)语句,同时使 ...