D - Factorization

思路:把相同的质因子看成相同的小球,求把这些小球放进n个盒子里的方案数。

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL unsigned long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 2e5 + ;
const int MOD = 1e9 + ;
int fac[N], inv[N];
int cnt[N];
LL q_pow(LL n, LL k) {
LL ans = ;
while(k) {
if(k&) ans = (ans * n) % MOD;
n = (n * n) % MOD;
k >>= ;
}
return ans;
}
void init() {
fac[] = ;
for (int i = ; i < N; i++) {
fac[i] = (1LL * fac[i-] * i) % MOD;
}
inv[N-] = q_pow(fac[N-], MOD-) % MOD;
for (int i = N-; i >= ; i--) inv[i] = (1LL * inv[i+] * (i+)) % MOD;
}
LL C(int n, int m) {
return ((1LL * fac[n] * inv[m]) % MOD * inv[n-m]) % MOD;
}
int main() {
int n, m, up = ;
init();
scanf("%d %d", &n, &m);
for (int i = ; i*i <= m; i++) {
if(m % i == ) {
int tmp = ;
while(m % i == ) m /= i, tmp++;
cnt[++up] = tmp;
}
}
if(m > ) cnt[++up] = ;
LL ans = ;
for (int i = ; i <= up; i++) ans = (ans * C(cnt[i]+n-, n-)) % MOD;
printf("%lld\n", ans);
return ;
}

AtCoder Beginner Contest 110 D - Factorization的更多相关文章

  1. AtCoder Beginner Contest 052

    没看到Beginner,然后就做啊做,发现A,B太简单了...然后想想做完算了..没想到C卡了一下,然后还是做出来了.D的话瞎想了一下,然后感觉也没问题.假装all kill.2333 AtCoder ...

  2. AtCoder Beginner Contest 100 2018/06/16

    A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...

  3. AtCoder Beginner Contest 053 ABCD题

    A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...

  4. AtCoder Beginner Contest 136

    AtCoder Beginner Contest 136 题目链接 A - +-x 直接取\(max\)即可. Code #include <bits/stdc++.h> using na ...

  5. AtCoder Beginner Contest 137 F

    AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...

  6. AtCoder Beginner Contest 076

    A - Rating Goal Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Takaha ...

  7. AtCoder Beginner Contest 079 D - Wall【Warshall Floyd algorithm】

    AtCoder Beginner Contest 079 D - Wall Warshall Floyd 最短路....先枚举 k #include<iostream> #include& ...

  8. AtCoder Beginner Contest 064 D - Insertion

    AtCoder Beginner Contest 064 D - Insertion Problem Statement You are given a string S of length N co ...

  9. AtCoder Beginner Contest 075 D - Axis-Parallel Rectangle【暴力】

    AtCoder Beginner Contest 075 D - Axis-Parallel Rectangle 我要崩溃,当时还以为是需要什么离散化的,原来是暴力,特么五层循环....我自己写怎么都 ...

随机推荐

  1. 【题解】Luogu SP8791 DYNALCA - Dynamic LCA

    原题传送门 这题用Link-Cut-Tree解决,Link-Cut-Tree详解 这道题的难点就在如何求LCA: 我们珂以先对其中一个点进行access操作,然后对另一个点进行access操作,因为L ...

  2. KPI 私有CA

    openssl总结及私有CA的搭建 搭建CA服务器 CA(证书颁发机构)服务器配置图解过程(1) 私有CA服务器的搭建 搭建CA服务器 使用OpenSSL搭建CA Linux加密和解密.openssl ...

  3. linux 关于redis-trib.rb构建redis集群

    之前搭建集群漏下的坑, 今次再搭一次. 环境 ruby环境 yum install ruby rubygems -y redis的gem环境 gem install redis-3.2.2.gem 部 ...

  4. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem D (Codeforces 831D) - 贪心 - 二分答案 - 动态规划

    There are n people and k keys on a straight line. Every person wants to get to the office which is l ...

  5. 做了一道cf水题

    被一道cf水题卡了半天的时间,主要原因时自己不熟悉c++stl库的函数,本来一个可以用库解决的问题,我用c语言模拟了那个函数半天,结果还超时了. 题意大概就是,给定n个数,查询k次,每次查询过后,输出 ...

  6. SSM集成activiti6.0错误集锦(二)

    项目环境 Maven构建 数据库:Orcle12c 服务器:Tomcat9 <java.version>1.8</java.version> <activiti.vers ...

  7. (转)开源项目miaosha(上)

    石墨文档:https://shimo.im/docs/iTDoZs4CVfICgSfV/ (二期)19.开源秒杀项目miaosha解读(上) [课程19]几张图.xmind0.6MB [课程19]开源 ...

  8. python 之 文件I/0

    打开和关闭文件 open()函数 必须要open()内置函数打开一个文件,创建一个file对象,相关的方法才可以调用它进行读写. 语法 file object=open(file_name [,acc ...

  9. Images之multi-stage builds

    原文链接 Use multi-stage builds Multi-stage builds are a new feature requiring Docker 17.05 or higher on ...

  10. 【转载】谈谈自己对REST、SOA、SOAP、RPC、ICE、ESB、BPM知识汇总及理解

    转载自:https://blog.csdn.net/tantexian/article/details/48196453 SOA: 维基百科解释:SOA:面向服务的软件架构(Service Orien ...