这里权当一个matplotlib的用法小结,主要用于记录,以防忘记。

需要安装一下Anaconda,这里推荐清华大学的镜像:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

matplotlib能将数据进行可视化,更直观地呈现。使数据更加客观,更具说服力。

1. 折线图

from matplotlib import pyplot as plt

# E:\Anaconda3\Library\bin添加到环境变量
x = range(2, 26, 2)
y = [15, 13, 14.5, 17, 20, 25, 26, 26, 24, 22, 18, 15] # 设置图片大小,宽20,高8,像素80
plt.figure(figsize=(20, 8), dpi=80) # 设置x轴的刻度
_xtick_labels = [i / 2 for i in range(4, 49)]
plt.xticks(_xtick_labels[::3]) #步长取3 plt.yticks(range(min(y), max(y) + 1)) # 绘图
plt.plot(x, y) # 保存,svg矢量图格式,放大不会有锯齿
plt.savefig('./t1.svg') # 展示图形
plt.show()

2. 设置中文

import random

from matplotlib import pyplot as plt, font_manager

#设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) x = range(120)
y = [random.randint(20, 35) for i in range(120)] plt.figure(figsize=(20, 8), dpi=80) # 调整x轴的刻度
# _x = list(x)[::10]
# _xtick_labels = ['hello,{}'.format(i) for i in _x]
# plt.xticks(_x, _xtick_labels) _x = list(x)
_xtick_labels = ['10点{}分'.format(i) for i in range(60)]
_xtick_labels += ['11点{}分'.format(i) for i in range(60)]
#rotation是逆时针旋转角度
# plt.xticks(_x[::3], _xtick_labels[::3], rotation = 45, fontproperties = 'SimHei') #这样是可以的
plt.xticks(_x[::3], _xtick_labels[::3], rotation = 45, fontproperties = my_font) plt.yticks(range(min(y), max(y) + 1)) #添加描述信息
plt.xlabel('时间', fontproperties = my_font)
plt.ylabel('温度 单位(℃)', fontproperties = my_font)
plt.title('10点到12点每分钟的气温变化情况', fontproperties = my_font)
#网格
#alpha是透明度,0最透明,1最明显
plt.grid(alpha = 0.3) plt.plot(x, y)
plt.show()

3. 多个折线图

图例的位置loc:

from matplotlib import pyplot as plt, font_manager

plt.figure(figsize=(20, 8), dpi=80)
x = range(11, 31)
y1 = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
y2 = [1,0,3,1,2,2,3,3,2,1,2,1,1,1,1,1,1,1,1,1] #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) plt.xticks(x, ['{}岁'.format(i) for i in list(x)], fontproperties = my_font)
plt.yticks([i / 2 for i in range(2 * min(y1), 2 * max(y1) + 1)]) #描述信息
plt.xlabel('年龄', fontproperties = my_font)
plt.ylabel('数量', fontproperties = my_font)
plt.title('统计个数', fontproperties = my_font, size = 18) #网格
#alpha是透明度
#linestyle -是实线 :是点虚线 --是线虚线 -.是点线虚线
plt.grid(alpha = 0.9, linestyle = ':') #两个都画
plt.plot(x, y1, label = '陈驰', color = 'red', linestyle = '--', linewidth = 3)
plt.plot(x, y2, label = '石泽涛', color = 'blue', linestyle = '-.', linewidth = 1) #添加图例
#这里显示中文需要注意一下
plt.legend(prop=my_font, loc=2) plt.show()

4. 散点图

from matplotlib import pyplot as plt, font_manager

y_3 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6] x_3 = range(1, 32)
x_10 = range(51, 82) plt.figure(figsize=(20, 8), dpi=80) #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) #画散点图
plt.scatter(x_3, y_3, label = '3月份')
plt.scatter(x_10, y_10, label = '10月份') _x = list(x_3) + list(x_10)
_xtick_labels = ['3月{}日'.format(i) for i in x_3]
_xtick_labels += ['10月{}日'.format(i - 50) for i in x_10] plt.xticks(_x[::3], _xtick_labels[::3], fontproperties = my_font, rotation = 45)
plt.yticks(range(min(y_3 + y_10), max(y_3 + y_10) + 1)) #添加图例
plt.legend(prop = my_font, loc = 2) #设置描述信息
plt.xlabel('时间', fontproperties = my_font)
plt.ylabel('温度(℃)', fontproperties = my_font)
plt.title('统计月份温度', fontproperties = my_font, size = 19) plt.grid(alpha = 0.4, linestyle = ':') plt.show()

5. 柱状图

from matplotlib import pyplot as plt, font_manager

a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章",
"乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ] b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
6.86, 6.58, 6.23] #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) plt.figure(figsize=(20, 8), dpi=80) plt.yticks(range(len(a)), a, fontproperties = my_font)
plt.xticks(list(range(int(min(b)), int(max(b)) + 1))[::2]) plt.ylabel('电影', fontproperties = my_font)
plt.xlabel('票房(亿元)', fontproperties = my_font)
plt.title('2017电影票房统计', fontproperties = my_font, size = 19) #width是条形图宽度
#bar是竖着的(width属性),barh是横着的(height属性)
plt.barh(range(len(a)), b, height = 0.3, color = 'orange') plt.grid(alpha = 0.3, linestyle = ':') plt.show()

6. 直方图

from matplotlib import pyplot as plt, font_manager

#设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362] plt.figure(figsize=(20, 8), dpi=80) _x = list(range(len(a)))
_bar_width = 0.1 plt.xticks([i + _bar_width for i in _x], a, fontproperties = my_font) plt.xlabel('电影', fontproperties = my_font)
plt.ylabel('票房', fontproperties = my_font)
plt.title('不同天的电影票房', fontproperties = my_font, size = 20) plt.bar(_x, b_16, width = _bar_width, label = '9月16日')
plt.bar([i + _bar_width for i in _x], b_15, width = _bar_width, label = '9月15日')
plt.bar([i + _bar_width * 2 for i in _x], b_14, width = _bar_width, label = '9月14日') plt.legend(prop = my_font, loc = 0) plt.show()

要想进一步学习,参考:

https://matplotlib.org/gallery/index.html

或者选用:

https://plot.ly/python/

[数据]matplotlib总结的更多相关文章

  1. 可视化数据matplotlib之安装与简单折线图

    matplotlib是一个可视化数据的模块,安装前需要先安装Visual Studio Community:然后去https://pypi.python.org/pypi上查找matplotlib并下 ...

  2. python爬取旅游数据+matplotlib简单可视化

    题目如下: 共由6个函数组成: 第一个函数爬取数据并转为DataFrame: 第二个函数爬取数据后存入Excel中,对于解题来说是多余的,仅当练手以及方便核对数据: 后面四个函数分别对应题目中的四个m ...

  3. python Matplotlib数据可视化神器安装与基本应用

    Matplotlib Matplotlib 是一个非常强大的 Python 画图工具; 手中有很多数据, Matplotlib能帮你画出美丽的: 线图; 散点图; 等高线图; 条形图; 柱状图; 3D ...

  4. python实战学习之matplotlib绘图

    matplotlib 是最流行的Python底层绘图库,主要做数据可视化图表 可以将数据可视化,能够更直观的呈现数据 matplotlib绘图基本要点 首先实现一个简单的绘图 # 导入pyplot f ...

  5. 无用之学matplotlib,numpy,pandas

    一.matplotlib学习 matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB,模仿MATLAB构建 例子1: # coding=utf- from ...

  6. matplotlib表面三维图

    1.basic numpy.meshgrid 由一维数组到二维数组,用于生成网格数据 matplotlib python绘图库 2.code In [88]: from mpl_toolkits.mp ...

  7. 11-2 numpy/pandas/matplotlib模块

    目录 numpy模块 一维数组 二维数组 列表list和numpy的区别 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的合并 通过函数方法创建多维数组 矩阵的运算 求最大值最小值 nump ...

  8. day18-常用模块III (numpy、pandas、matplotlib)

    目录 numpy模块 创建矩阵 获取矩阵的行列数 切割矩阵 矩阵元素替换 矩阵的合并 通过函数创建矩阵 矩阵的运算 矩阵的点乘与转置 矩阵的逆 矩阵的其他操作 numpy.random生成随机数 pa ...

  9. ApacheCN 数据科学译文集 20211109 更新ApacheCN 数据科学译文集 20211109 更新

    计算与推断思维 一.数据科学 二.因果和实验 三.Python 编程 四.数据类型 五.表格 六.可视化 七.函数和表格 八.随机性 九.经验分布 十.假设检验 十一.估计 十二.为什么均值重要 十三 ...

随机推荐

  1. CTFlearn Inj3ction Time --sql注入python多线程脚本练习

    0x00前言: 本题是国外的一个CTF平台的题目,题目不难,但学习了波多线程payload写法 先看题目描述,提示"union是个有用的命令",估计是用联合查询就能出答案的(因为前 ...

  2. python魔法方法-反射运算和增量运算

    反射运算 什么是反射运算符,其实就是反转了两个对象,下面先看一个普通运行符的实现: class Foo(object): def __init__(self, x): self.x = x def _ ...

  3. NOIP 2006 作业调度方案

    [问题描述] 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j-k表示 ...

  4. 域名DNS解析工具ping/nslookup/dig/host

    常见 DNS 记录的类型 类型 目的 A 地址记录,用来指定域名的 IPv4 地址,如果需要将域名指向一个 IP 地址,就需要添加 A 记录. AAAA 用来指定主机名(或域名)对应的 IPv6 地址 ...

  5. Makefile 中的.PHONY

    PHONY 目标并非实际的文件名:只是在显式请求时执行命令的名字.有两种理由需要使用PHONY 目标:避免和同名文件冲突,改善性能. 所谓的PHONY这个单词就是伪造的意思,makefile中将.PH ...

  6. [Sqoop]将Hive数据表导出到Mysql

    业务背景 mysql表YHD_CATEG_PRIOR的结构例如以下: -- Table "YHD_CATEG_PRIOR" DDL CREATE TABLE `YHD_CATEG_ ...

  7. 内核同步机制-RCU同步机制

    转自:https://blog.csdn.net/nevil/article/details/7718375 转自http://www.360doc.com/content/09/0805/00/36 ...

  8. iOS 跳转到系统指定设置界面

    在需要调转的按钮动作中添加如下的代码,就会跳转到设置中自己的app的设置界面,这里会有通知和位置权限的设置 NSURL * url = [NSURLURLWithString:UIApplicatio ...

  9. .net源码调试 http://referencesource.microsoft.com/

    其实关于.net源码调试 网上的资料已经很多了,我以前转载的文章有 VS2010下如何调试Framework源代码(即FCL) 和 如何使你的应用程序调试进.NET Framework 4.5源代码内 ...

  10. 【ZH奶酪】如何用Python计算最长公共子序列和最长公共子串

    1. 什么是最长公共子序列?什么是最长公共子串? 1.1. 最长公共子序列(Longest-Common-Subsequences,LCS) 最长公共子序列(Longest-Common-Subseq ...