Poisson Distribution

Given a Poisson process, the probability of obtaining exactly successes in trials is given by the limit of a binomial distribution

(1)

Viewing the distribution as a function of the expected number of successes

(2)

instead of the sample size for fixed , equation (2) then becomes

(3)

Letting the sample size become large, the distribution then approaches

(4)
(5)
(6)
(7)
(8)

which is known as the Poisson distribution (Papoulis 1984, pp. 101 and 554; Pfeiffer and Schum 1973, p. 200). Note that the sample size has completely dropped out of the probability function, which has the same functional form for all values of .

The Poisson distribution is implemented in the Wolfram Language as PoissonDistribution[mu].

As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, since

(9)

The ratio of probabilities is given by

(10)

The Poisson distribution reaches a maximum when

(11)

where is the Euler-Mascheroni constant and is a harmonic number, leading to the transcendental equation

(12)

which cannot be solved exactly for .

The moment-generating function of the Poisson distribution is given by

(13)
(14)
(15)
(16)
(17)
(18)

so

(19)
(20)

(Papoulis 1984, p. 554).

The raw moments can also be computed directly by summation, which yields an unexpected connection with the Bell polynomial and Stirling numbers of the second kind,

(21)

known as Dobiński's formula. Therefore,

(22)
(23)
(24)

The central moments can then be computed as

(25)
(26)
(27)

so the mean, variance, skewness, and kurtosis are

(28)
(29)
(30)
(31)
(32)

The characteristic function for the Poisson distribution is

(33)

(Papoulis 1984, pp. 154 and 554), and the cumulant-generating function is

(34)

so

(35)

The mean deviation of the Poisson distribution is given by

(36)

The Poisson distribution can also be expressed in terms of

(37)

the rate of changes, so that

(38)

The moment-generating function of a Poisson distribution in two variables is given by

(39)

If the independent variables , , ..., have Poisson distributions with parameters , , ..., , then

(40)

has a Poisson distribution with parameter

(41)

This can be seen since the cumulant-generating function is

(42)
(43)

A generalization of the Poisson distribution has been used by Saslaw (1989) to model the observed clustering of galaxies in the universe. The form of this distribution is given by

(44)

where is the number of galaxies in a volume , , is the average density of galaxies, and , with is the ratio of gravitational energy to the kinetic energy of peculiar motions, Letting gives

(45)

which is indeed a Poisson distribution with . Similarly, letting gives .

SEE ALSO: Binomial Distribution, Erlang Distribution, Poisson Process, Poisson Theorem

 

REFERENCES:

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987.

Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.

Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.

Pfeiffer, P. E. and Schum, D. A. Introduction to Applied Probability. New York: Academic Press, 1973.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.

Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.

Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 111-112, 1992.

 

Referenced on Wolfram|Alpha: Poisson Distribution

 

CITE THIS AS:

Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html

1重 0-1分布

N重 二项分布 ,  系数为阶乘降/阶乘增, 从0开始

无限重 v=Np,  泊松分析, 先确定N,再确定对应的p, 再得v,   此时才有泊松分布公式可用

[转]Poisson Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  2. Poisson distribution 泊松分布 指数分布

    Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...

  3. 【概率论】5-4:泊松分布(The Poisson Distribution)

    title: [概率论]5-4:泊松分布(The Poisson Distribution) categories: - Mathematic - Probability keywords: - Po ...

  4. Poisson Distribution——泊松分布

    老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...

  5. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  6. The zero inflated negative binomial distribution

    The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...

  7. Statistics : Data Distribution

    1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...

  8. 常见的概率分布类型(二)(Probability Distribution II)

    以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...

  9. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

随机推荐

  1. UI基础二:下拉,F4,OP等

    常用的搜索帮助有SE11的SH,域,值列表,组件等...下面介绍一下经常用的: 一:下拉 dropdown是最经常用的,也是最简单的一种. 不管是查询条件,还是结果清单,还是明细界面,下拉都是一样的 ...

  2. Xshell中文乱码怎么处理?

    改成如下图:

  3. linux上udev的配置(转载)

    udev配置文件主要的udev配置文件是/etc/udev/udev.conf.这个文件通常很短,他可能只是包含几行#开头的注释,然后有几行选项:udev_rules=”/etc/udev/rules ...

  4. 【转】vs IIS破除文件上传限制最全版

    今天在测试一下上传文件的时候发现iis和配置存在上传文件大小限制(IIS默认大小30M,最大运行为2g:2147483647),百度了一部分资料有些发布到IIS好使,但是在VS调试中不好使.于是自己不 ...

  5. ActiveMQ 消息的重新投递

    正常情况下:consumer 消费完消息后,会发送"标准确认"给 broker,这个确认对象以 MessageAck 类表征: // 省略其他代码.类中定义了各种确认的类型 pub ...

  6. Windows系统目录解释

    目录 说明 C:\Program Files 64位程序安装目录 C:\Program Files (x86) 32位程序安装目录 C:\Windows 操作系统主要目录 C:\Windows\Sys ...

  7. 牛客网 PAT 算法历年真题 1009 : 1019. 数字黑洞 (20)

    1019. 数字黑洞 (20) 时间限制 1000 ms 内存限制 32768 KB 代码长度限制 100 KB 判断程序 Standard (来自 小小) 题目描述 给定任一个各位数字不完全相同的4 ...

  8. Qt绘制文本二 弯曲排列和旋转效果 弧形路径 正弦函数路径

    void WgtText::paintEvent(QPaintEvent *event) { QPainter painter(this); QString m_string("abcdef ...

  9. SpringBoot 配置文件存放位置及读取顺序

    SpringBoot配置文件可以使用yml格式和properties格式 分别的默认命名为:application.yml.application.properties 存放目录 SpringBoot ...

  10. 逆袭之旅DAY13.东软实训.Oracle.简单的查询语句.限制.排序

    2018-07-09  21:34:00 一.简单查询: .查询数据表的所有列: SELECT * FROM 表名; SELECT 列名,列名.... FROM 表名; .起别名: SELECT 列名 ...