Poisson Distribution

Given a Poisson process, the probability of obtaining exactly successes in trials is given by the limit of a binomial distribution

(1)

Viewing the distribution as a function of the expected number of successes

(2)

instead of the sample size for fixed , equation (2) then becomes

(3)

Letting the sample size become large, the distribution then approaches

(4)
(5)
(6)
(7)
(8)

which is known as the Poisson distribution (Papoulis 1984, pp. 101 and 554; Pfeiffer and Schum 1973, p. 200). Note that the sample size has completely dropped out of the probability function, which has the same functional form for all values of .

The Poisson distribution is implemented in the Wolfram Language as PoissonDistribution[mu].

As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, since

(9)

The ratio of probabilities is given by

(10)

The Poisson distribution reaches a maximum when

(11)

where is the Euler-Mascheroni constant and is a harmonic number, leading to the transcendental equation

(12)

which cannot be solved exactly for .

The moment-generating function of the Poisson distribution is given by

(13)
(14)
(15)
(16)
(17)
(18)

so

(19)
(20)

(Papoulis 1984, p. 554).

The raw moments can also be computed directly by summation, which yields an unexpected connection with the Bell polynomial and Stirling numbers of the second kind,

(21)

known as Dobiński's formula. Therefore,

(22)
(23)
(24)

The central moments can then be computed as

(25)
(26)
(27)

so the mean, variance, skewness, and kurtosis are

(28)
(29)
(30)
(31)
(32)

The characteristic function for the Poisson distribution is

(33)

(Papoulis 1984, pp. 154 and 554), and the cumulant-generating function is

(34)

so

(35)

The mean deviation of the Poisson distribution is given by

(36)

The Poisson distribution can also be expressed in terms of

(37)

the rate of changes, so that

(38)

The moment-generating function of a Poisson distribution in two variables is given by

(39)

If the independent variables , , ..., have Poisson distributions with parameters , , ..., , then

(40)

has a Poisson distribution with parameter

(41)

This can be seen since the cumulant-generating function is

(42)
(43)

A generalization of the Poisson distribution has been used by Saslaw (1989) to model the observed clustering of galaxies in the universe. The form of this distribution is given by

(44)

where is the number of galaxies in a volume , , is the average density of galaxies, and , with is the ratio of gravitational energy to the kinetic energy of peculiar motions, Letting gives

(45)

which is indeed a Poisson distribution with . Similarly, letting gives .

SEE ALSO: Binomial Distribution, Erlang Distribution, Poisson Process, Poisson Theorem

 

REFERENCES:

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987.

Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.

Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.

Pfeiffer, P. E. and Schum, D. A. Introduction to Applied Probability. New York: Academic Press, 1973.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.

Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.

Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 111-112, 1992.

 

Referenced on Wolfram|Alpha: Poisson Distribution

 

CITE THIS AS:

Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html

1重 0-1分布

N重 二项分布 ,  系数为阶乘降/阶乘增, 从0开始

无限重 v=Np,  泊松分析, 先确定N,再确定对应的p, 再得v,   此时才有泊松分布公式可用

[转]Poisson Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  2. Poisson distribution 泊松分布 指数分布

    Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...

  3. 【概率论】5-4:泊松分布(The Poisson Distribution)

    title: [概率论]5-4:泊松分布(The Poisson Distribution) categories: - Mathematic - Probability keywords: - Po ...

  4. Poisson Distribution——泊松分布

    老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...

  5. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  6. The zero inflated negative binomial distribution

    The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...

  7. Statistics : Data Distribution

    1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...

  8. 常见的概率分布类型(二)(Probability Distribution II)

    以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...

  9. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

随机推荐

  1. acl使用示例

    declare   v_count  number;  uprinciple varchar2(20);  principle  varchar2(20);  begin uprinciple := ...

  2. ThinkPHP5集成JS-SDK实现微信自定义分享功能

    最近开发一个项目,需要将链接分享给好友时能够自定义标题.简介和logo,现将ThinkPHP5集成JS-SDK实现微信自定义分享功能的过程整理成文. 一.准备工作 1.认证的公众号 不管是订阅号还是服 ...

  3. oracle 11g创建数据库教程

    cd /oracle/app/oracle/product//dbhome_1/bin ./dbca 自定义用户表空间大小. 安装过程半个小时是需要的. 2.配置oracle系统用户环境变量 使用vi ...

  4. TCP可靠传输:校验和,重传控制,序号标识,滑动窗口、确认应答

    Tcp通过校验和,重传控制,序号标识,滑动窗口.确认应答实现可靠传输 应答码:ACK TCP的滑动窗口机制       TCP这个协议是网络中使用的比较广泛,他是一个面向连接的可靠的传输协议.既然是一 ...

  5. linux nginx 安装防火墙ngx_lua_waf

    ngx_lua_waf是一款开源的 基于 ngx_lua的 web应用防火墙 github地址是  https://github.com/loveshell/ngx_lua_waf 安装流程如下 1 ...

  6. 设计一个高质量的API接口

    参考网址:http://url.cn/5UaTeyv 前言 在设计接口时,有很多因素要考虑,如接口的业务定位,接口的安全性,接口的可扩展性.接口的稳定性.接口的跨域性.接口的协议规则.接口的路径规则. ...

  7. flask项目结构(四)使用sqlalchemy和alembic

    简介 其实我不是啥正经人,错了,不是啥正经程序员,所能想到的估计也就码农一级吧,高级程序员,搞什么算法,什么人工智能,大数据计算…………离我还太遥远. 但是这并不妨碍我继续学习,继续写垃圾小程序. 反 ...

  8. 如何查看.java文件的字节码(原码)

    出自于:https://www.cnblogs.com/tomasman/p/6751751.html 直接了解foreach底层有些困难,我们需要从更简单的例子着手.下面上一个简单例子: 1 pub ...

  9. 异步IO(协程,消息循环队列)

    同步是CPU自己主动查看IO操作是否完成,异步是IO操作完成后发出信号通知CPU(CPU是被通知的) 阻塞与非阻塞的区别在于发起IO操作之后,CPU是等待IO操作完成再进行下一步操作,还是不等待去做其 ...

  10. [Leetcode 100]判断二叉树相同 Same Tree

    [题目] 判断二叉树是否相同. [思路] check函数. p==null并且q==null,返回true;(两边完全匹配) p==null或q==null,返回false;(p.q其中一方更短) p ...