[转]Poisson Distribution
Poisson Distribution
Given a Poisson process, the probability of obtaining exactly successes in
trials is given by the limit of a binomial distribution
![]() |
(1)
|
Viewing the distribution as a function of the expected number of successes
![]() |
(2)
|
instead of the sample size for fixed
, equation (2) then becomes
![]() |
(3)
|
Letting the sample size become large, the distribution then approaches
![]() |
![]() |
![]() |
(4)
|
![]() |
![]() |
![]() |
(5)
|
![]() |
![]() |
![]() |
(6)
|
![]() |
![]() |
![]() |
(7)
|
![]() |
![]() |
![]() |
(8)
|
which is known as the Poisson distribution (Papoulis 1984, pp. 101 and 554; Pfeiffer and Schum 1973, p. 200). Note that the sample size has completely dropped out of the probability function, which has the same functional form for all values of
.
The Poisson distribution is implemented in the Wolfram Language as PoissonDistribution[mu].
As expected, the Poisson distribution is normalized so that the sum of probabilities equals 1, since
![]() |
(9)
|
The ratio of probabilities is given by
![]() |
(10)
|
The Poisson distribution reaches a maximum when
![]() |
(11)
|
where is the Euler-Mascheroni constant and
is a harmonic number, leading to the transcendental equation
![]() |
(12)
|
which cannot be solved exactly for .
The moment-generating function of the Poisson distribution is given by
![]() |
![]() |
![]() |
(13)
|
![]() |
![]() |
![]() |
(14)
|
![]() |
![]() |
![]() |
(15)
|
![]() |
![]() |
![]() |
(16)
|
![]() |
![]() |
![]() |
(17)
|
![]() |
![]() |
![]() |
(18)
|
so
![]() |
![]() |
![]() |
(19)
|
![]() |
![]() |
![]() |
(20)
|
(Papoulis 1984, p. 554).
The raw moments can also be computed directly by summation, which yields an unexpected connection with the Bell polynomial and Stirling numbers of the second kind,
![]() |
(21)
|
known as Dobiński's formula. Therefore,
![]() |
![]() |
![]() |
(22)
|
![]() |
![]() |
![]() |
(23)
|
![]() |
![]() |
![]() |
(24)
|
The central moments can then be computed as
![]() |
![]() |
![]() |
(25)
|
![]() |
![]() |
![]() |
(26)
|
![]() |
![]() |
![]() |
(27)
|
so the mean, variance, skewness, and kurtosis are
![]() |
![]() |
![]() |
(28)
|
![]() |
![]() |
![]() |
(29)
|
![]() |
![]() |
![]() |
(30)
|
![]() |
![]() |
![]() |
(31)
|
![]() |
![]() |
![]() |
(32)
|
The characteristic function for the Poisson distribution is
![]() |
(33)
|
(Papoulis 1984, pp. 154 and 554), and the cumulant-generating function is
![]() |
(34)
|
so
![]() |
(35)
|
The mean deviation of the Poisson distribution is given by
![]() |
(36)
|
The Poisson distribution can also be expressed in terms of
![]() |
(37)
|
the rate of changes, so that
![]() |
(38)
|
The moment-generating function of a Poisson distribution in two variables is given by
![]() |
(39)
|
If the independent variables ,
, ...,
have Poisson distributions with parameters
,
, ...,
, then
![]() |
(40)
|
has a Poisson distribution with parameter
![]() |
(41)
|
This can be seen since the cumulant-generating function is
![]() |
(42)
|
![]() |
(43)
|
A generalization of the Poisson distribution has been used by Saslaw (1989) to model the observed clustering of galaxies in the universe. The form of this distribution is given by
![]() |
(44)
|
where is the number of galaxies in a volume
,
,
is the average density of galaxies, and
, with
is the ratio of gravitational energy to the kinetic energy of peculiar motions, Letting
gives
![]() |
(45)
|
which is indeed a Poisson distribution with . Similarly, letting
gives
.
SEE ALSO: Binomial Distribution, Erlang Distribution, Poisson Process, Poisson Theorem
REFERENCES:
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987.
Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. Oxford, England: Oxford University Press, 1992.
Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.
Pfeiffer, P. E. and Schum, D. A. Introduction to Applied Probability. New York: Academic Press, 1973.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.
Saslaw, W. C. "Some Properties of a Statistical Distribution Function for Galaxy Clustering." Astrophys. J. 341, 588-598, 1989.
Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 111-112, 1992.
Referenced on Wolfram|Alpha: Poisson Distribution
CITE THIS AS:
Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html
1重 0-1分布
N重 二项分布 , 系数为阶乘降/阶乘增, 从0开始
无限重 v=Np, 泊松分析, 先确定N,再确定对应的p, 再得v, 此时才有泊松分布公式可用
[转]Poisson Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...
- Poisson distribution 泊松分布 指数分布
Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...
- 【概率论】5-4:泊松分布(The Poisson Distribution)
title: [概率论]5-4:泊松分布(The Poisson Distribution) categories: - Mathematic - Probability keywords: - Po ...
- Poisson Distribution——泊松分布
老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...
- Study notes for Discrete Probability Distribution
The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...
- The zero inflated negative binomial distribution
The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...
- Statistics : Data Distribution
1.Normal distribution In probability theory, the normal (or Gaussian or Gauss or Laplace–Gauss) dist ...
- 常见的概率分布类型(二)(Probability Distribution II)
以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...
- NLP&数据挖掘基础知识
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...
随机推荐
- UI基础二:下拉,F4,OP等
常用的搜索帮助有SE11的SH,域,值列表,组件等...下面介绍一下经常用的: 一:下拉 dropdown是最经常用的,也是最简单的一种. 不管是查询条件,还是结果清单,还是明细界面,下拉都是一样的 ...
- Xshell中文乱码怎么处理?
改成如下图:
- linux上udev的配置(转载)
udev配置文件主要的udev配置文件是/etc/udev/udev.conf.这个文件通常很短,他可能只是包含几行#开头的注释,然后有几行选项:udev_rules=”/etc/udev/rules ...
- 【转】vs IIS破除文件上传限制最全版
今天在测试一下上传文件的时候发现iis和配置存在上传文件大小限制(IIS默认大小30M,最大运行为2g:2147483647),百度了一部分资料有些发布到IIS好使,但是在VS调试中不好使.于是自己不 ...
- ActiveMQ 消息的重新投递
正常情况下:consumer 消费完消息后,会发送"标准确认"给 broker,这个确认对象以 MessageAck 类表征: // 省略其他代码.类中定义了各种确认的类型 pub ...
- Windows系统目录解释
目录 说明 C:\Program Files 64位程序安装目录 C:\Program Files (x86) 32位程序安装目录 C:\Windows 操作系统主要目录 C:\Windows\Sys ...
- 牛客网 PAT 算法历年真题 1009 : 1019. 数字黑洞 (20)
1019. 数字黑洞 (20) 时间限制 1000 ms 内存限制 32768 KB 代码长度限制 100 KB 判断程序 Standard (来自 小小) 题目描述 给定任一个各位数字不完全相同的4 ...
- Qt绘制文本二 弯曲排列和旋转效果 弧形路径 正弦函数路径
void WgtText::paintEvent(QPaintEvent *event) { QPainter painter(this); QString m_string("abcdef ...
- SpringBoot 配置文件存放位置及读取顺序
SpringBoot配置文件可以使用yml格式和properties格式 分别的默认命名为:application.yml.application.properties 存放目录 SpringBoot ...
- 逆袭之旅DAY13.东软实训.Oracle.简单的查询语句.限制.排序
2018-07-09 21:34:00 一.简单查询: .查询数据表的所有列: SELECT * FROM 表名; SELECT 列名,列名.... FROM 表名; .起别名: SELECT 列名 ...