一,旅行商问题与H回路的联系(H回路 定义为 哈密尔顿回路)

旅行商问题是希望售货员恰好访问每个城市一次,最终回到起始城市所用的费用最低,也即判断图中是否存在一个费用至多为K的回路。(K相当于图中顶点的个数)

由于售货员可以从某个城市到其他任何一个城市。因此,该问题对应的是一个完全图(设为G)。而关于判断哈密尔顿回路的图(设为G)并不一定为完全图,因此,在将哈密尔顿回路问题归约到旅行商问题时,定义一个费用函数(详情参考《算法导论第二版中文版》第626页。

通过这个费用函数,将判断G是否存在一个费用至多为K的路径转化为G中是否有哈密尔顿回路。

二,最长路径问题与H回路的联系

图的最长路径:若一条路径包含了图中所有的顶点且各个顶点只包含一次,那么它就是一条最长路径。(如果有回路或圈则某个顶点一定会出现在路径中出现了两次)

哈密尔顿回路问题对应的图为G,最长路径问题对应的图为G′,那么将哈密尔顿回路问题归约到最长路径问题,实质上是已经G具有H回路(H圈),如何判断G′具有H路?

如何根据实际要证明的已知的最长路径问题建模而成的G′,构造出G呢?-----在G′的基础上增加一个顶点V,并将G′中各个点与V连一条边,形成的图即G。

若G中存在H圈则G′中存在H路。

理论证明参考《图论》中的度序列定理。

旅行商问题(TSP)、最长路径问题与哈密尔顿回路之间的联系(归约)的更多相关文章

  1. 【智能算法】用模拟退火(SA, Simulated Annealing)算法解决旅行商问题 (TSP, Traveling Salesman Problem)

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 01 什么是旅行商问题(TS ...

  2. ubuntu 终端设置(颜色与长路径)

    Linux给人最大的享受就是可以根据个人喜好去定制令自己舒服的系统配置,像终端颜色的设置就是一个典型的例子. 图1 系统默认状态下的终端显示     在没有经过自定义配置的终端下工作久了,难免容易疲劳 ...

  3. Codefroces Gym 100781A(树上最长路径)

    http://codeforces.com/gym/100781/attachments 题意:有N个点,M条边,问对两两之间的树添加一条边之后,让整棵大树最远的点对之间的距离最近,问这个最近距离是多 ...

  4. 【POJ 3162】 Walking Race (树形DP-求树上最长路径问题,+单调队列)

    Walking Race   Description flymouse's sister wc is very capable at sports and her favorite event is ...

  5. hdoj 2196 Computer【树的直径求所有的以任意节点为起点的一个最长路径】

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. AOE网上的关键路径(最长路径 + 打印路径)

    题目描述 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图.     AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG ...

  7. POJ 1797 Heavy Transportation(Dijkstra变形——最长路径最小权值)

    题目链接: http://poj.org/problem?id=1797 Background Hugo Heavy is happy. After the breakdown of the Carg ...

  8. Going from u to v or from v to u? POJ - 2762(强连通 有向最长路径)

    In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, an ...

  9. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

随机推荐

  1. [同事转帖] .net core的服务器模式和工作站模式

    发现自己的服务器上面的进程占用越来越厉害 所以就跟同事讨论了一下 性能组同事 说已经发现 并且给了一个 网址 这里转帖记录一下 避免以后找不到. .NET Core是一个开源通用的开发框架,具有跨平台 ...

  2. [自学]Docker system 命令 查看docker镜像磁盘占用情况 Docker volume 相关

    内容From https://docs.docker.com/engine/reference/commandline/system_df/ docker的image和docker的container ...

  3. WPF将数据库和GridView绑定并更改GridView模板

    首先来看一下如何使用GridView,在前台的话代码如下:这里仅仅举出一个例子,GridView是作为子项嵌套在ListView中的,这里的数据源是通过绑定的方式来绑定到GridView中的. < ...

  4. BZOJ3876 AHOI/JSOI2014支线剧情(上下界网络流)

    原图所有边下界设为1上界设为inf花费为时间,那么显然就是一个上下界最小费用流了.做法与可行流类似. 因为每次选的都是最短路增广,且显然不会有负权增广路,所以所求出来的可行流的费用就是最小的. #in ...

  5. 码云平台IDEA系列的插件使用

    一.IDEA插件安装 file -- setting --  Plugins -- 搜索gitee --  Search in repositories 安装后重启编译器 二.登录并拉取项目 file ...

  6. MT【21】任意基底下的距离公式

    解析: 评:$\theta=90^0$时就是正交基底下(即直角坐标系下)的距离公式.

  7. 学习Spring Boot:(二十四)多数据源配置与使用

    前言 随着业务量增大,可能有些业务不是放在同一个数据库中,所以系统有需求使用多个数据库完成业务需求,我们需要配置多个数据源,从而进行操作不同数据库中数据. 正文 JdbcTemplate 多数据源 配 ...

  8. 【BZOJ3202】项链(莫比乌斯反演,Burnside引理)

    [BZOJ3202]项链(莫比乌斯反演,Burnside引理) 题面 BZOJ 洛谷 题解 首先读完题目,很明显的感觉就是,分成了两个部分计算. 首先计算本质不同的珠子个数,再计算本质不同的项链个数. ...

  9. Luogu 4294 [WC2008]游览计划 | 斯坦纳树

    题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...

  10. Sharepoint 性能之SQL Server内存设置

    In this article, let's understand the Minimum and Maximum server memory settings of SQL Server. The ...