SparkRDD简介/常用算子/依赖/缓存
SparkRDD简介/常用算子/依赖/缓存
RDD简介
RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD是一个类
RDD的属性
1.一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。
2.保存了计算每个分区的函数,这个计算方法会应用到每一个数据块上,Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。
3.RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。
4.RDD的分片函数(Partitioner),一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。
5.一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。
如何创建RDD
1.通过序列化集合的方式创建RDD(parallelize,makeRDD)
2.通过读取外部的数据源(testFile)
3.通过其他的rdd做transformation操作转换成行的RDD
RDD的两种算子:
1.Transformation
- map(func) :返回一个新的分布式数据集,由每个原元素经过func函数转换后组成
- filter(func) : 返回一个新的数据集,由经过func函数后返回值为true的原元素组成
- flatMap(func) : 类似于map,但是每一个输入元素,会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)
- flatMap(func) : 类似于map,但是每一个输入元素,会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)
- sample(withReplacement, frac, seed) :
根据fraction指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed用于指定随机数生成器种子 - union(otherDataset) : 返回一个新的数据集,由原数据集和参数联合而成
- reduceByKey(func, [numTasks]) : 在一个(K,V)对的数据集上使用,返回一个(K,V)对的数据集,key相同的值,都被使用指定的reduce函数聚合到一起。和groupbykey类似,任务的个数是可以通过第二个可选参数来配置的。
- join(otherDataset, [numTasks]) :
在类型为(K,V)和(K,W)类型的数据集上调用,返回一个(K,(V,W))对,每个key中的所有元素都在一起的数据集 - groupWith(otherDataset, [numTasks]) : 在类型为(K,V)和(K,W)类型的数据集上调用,返回一个数据集,组成元素为(K, Seq[V], Seq[W]) Tuples。这个操作在其它框架,称为CoGroup
- cartesian(otherDataset) : 笛卡尔积。但在数据集T和U上调用时,返回一个(T,U)对的数据集,所有元素交互进行笛卡尔积。
- intersection(otherDataset):对源RDD和参数RDD求交集后返回一个新的RDD
- distinct([numTasks])) 对源RDD进行去重后返回一个新的RDD
- groupByKey([numTasks]) 在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD
reduceByKey(func, [numTasks]) 在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置 - aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])
- sortByKey([ascending], [numTasks]) 在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD
- sortBy(func,[ascending], [numTasks]) 与sortByKey类似,但是更灵活
- join(otherDataset, [numTasks]) 在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD
- cogroup(otherDataset, [numTasks]) 在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable,Iterable))类型的RDD
2.Action
- reduce(func) 通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的
- collect() 在驱动程序中,以数组的形式返回数据集的所有元素
- count() 返回RDD的元素个数
- first() 返回RDD的第一个元素(类似于take(1))
- take(n) 返回一个由数据集的前n个元素组成的数组
- takeSample(withReplacement,num, [seed]) 返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子
- takeOrdered(n, [ordering])
- saveAsTextFile(path) 将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本
- saveAsSequenceFile(path) 将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。
- saveAsObjectFile(path)
- countByKey() 针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。
- foreach(func) 在数据集的每一个元素上,运行函数func进行更新。
RDD的依赖关系
1.窄依赖
窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用
总结:窄依赖我们形象的比喻为独生子女
2.宽依赖
宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition
总结:宽依赖我们形象的比喻为超生
3.Lineage(血统)
RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(即血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
DAG的生成
DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,对于窄依赖,partition的转换处理在Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。
RDD的缓存
Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存个数据集。当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存,是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。
找依赖关系划分stage的目的之一就是划分缓存, 如何通过stage的划分设置缓存?
(1)在窄依赖想设置缓存时用cache
(2)在宽依赖想设置缓存时用checkpoint
如何设置cache和checkpoint?
cache:someRDD.cache()就添加成功缓存,放入到内存中
someRDD.persist(StorageLevel.MEMORY_AND_DISK):根据自己的需要设置缓存的位置(内存和硬盘)
checkpoint:可以把RDD计算后的数据存储在本地磁盘上,也可以是hdfs
sc.setCheckpointDIr("hdfs://hadoop1:9000/checkpoint")设置checkpoint的路径 在宽依赖前设置
someRDD.checkpoint()设置checkpoint
cache 和checkpoint的区别
cache只是缓存数据,不改变RDD的依赖关系,checkpoint生成了一个新的RDD,后面的RDD将依赖新的RDD依赖关系已经改变 。数据恢复的顺序:checkpoint ---》cache--》重算
SparkRDD简介/常用算子/依赖/缓存的更多相关文章
- flink01--------1.flink简介 2.flink安装 3. flink提交任务的2种方式 4. 4flink的快速入门 5.source 6 常用算子(keyBy,max/min,maxBy/minBy,connect,union,split+select)
1. flink简介 1.1 什么是flink Apache Flink是一个分布式大数据处理引擎,可以对有限数据流(如离线数据)和无限流数据及逆行有状态计算(不太懂).可以部署在各种集群环境,对各种 ...
- spark学习(10)-RDD的介绍和常用算子
RDD(弹性分布式数据集,里面并不存储真正要计算的数据,你对RDD的操作,他会在Driver端转换成Task,下发到Executor计算分散在多台集群上的数据) RDD是一个代理,你对代理进行操作,他 ...
- C# 依赖缓存
使用轮询的方式 数据库: 在VS的命令里面输入 aspnet_regsql.exe -S (local) -U sa -P 123456 -d ERP_SQL -ed 上面这句是用来设置哪个服务器上的 ...
- ASP.NET MVC 数据库依赖缓存的实现
当数据库中的信息发生变化的时候,应用程序能够获取变化的通知是缓存依赖得以实现的基础.应用程序可以通过轮询获取数据变化的信息,使用轮询的话也不可能重新查一次后再和以前的数据做比较,如果这样的话如果我一个 ...
- ASP.NET MVC 实现与SQLSERVER的依赖缓存
原文:ASP.NET MVC 实现与SQLSERVER的依赖缓存 本文主要是为了了解ASP.NET MVC 实现与SQLSERVER的依赖缓存的功能,针对自己对于这方面知识的学习的过程的一个记录.由于 ...
- 初遇 Asp.net MVC 数据库依赖缓存那些事儿
问题背景: 最近做一个非常简单的功能,就是使用ajax请求的方式从服务端请求一段下拉表的数据. 以前也有做过这个功能,只不过这次做这个功能的时候冒出了一个想法: 我请求的这段数据它是一段相对比较固定的 ...
- 利用MSSQL对不经常使用的表进行依赖缓存
缓存是我们开发应用系统的一把利刃,如果用的不好,会导致数据不准确等一系列问题. 所以在如何选择缓存的时候,我们要慎之又慎.所以在对系统中一些 不经常变化的表,我们可以采用SqlCacheDenpend ...
- ASP.NET MVC 数据库依赖缓存
ASP.NET MVC 数据库依赖缓存 问题背景 最近做一个非常简单的功能,就是使用ajax请求的方式从服务端请求一段下拉表的数据. 以前也有做过这个功能,只不过这次做这个功能的时候冒出了一个想法 ...
- spark常用算子总结
算子分为value-transform, key-value-transform, action三种.f是输入给算子的函数,比如lambda x: x**2 常用算子: keys: 取pair rdd ...
随机推荐
- Vert.x简介
https://vertx.io/ https://vertx.io/download/ https://baike.baidu.com/item/Vert.x 近年来,移动网络.社交网络和电商的兴起 ...
- win10总是2分钟就自动睡眠怎么办 win10系统自动休眠bug怎么解决(转)
解决方法如下: 1.右键点击开始图标,选择[运行],或者利用快捷键“win+R”打开运行窗口,win键是ctrl和alt键中间的徽标键:
- [转帖]召冠总的 SQLSERVER常用的性能诊断语句. --保存学习备查
CopyFrom https://www.cnblogs.com/zhaoguan_wang /*常规服务器动态管理对象包括:dm_db_*:数据库和数据库对象dm_exec_*:执行用户代码和关联的 ...
- width() 、 height() 方法;innerWidth() 、innerHeight() 方法;outerWidth() 、 outerHeight() 方法的区别
1.width() . height() 方法 设置或返回元素的宽度.高度(不包括内边距.边框或外边距): 2.innerWidth() .innerHeight() 方法 返回元素的宽度.高度(包括 ...
- wps word改多级编号为2.1
右键标题1, 修改样式 编号 多级编号 标题1 2 3 右键标题2 修改样式 选择格式-编号 选择多级编号-标题1 2 3 直接点确定,OK. ---------------------------- ...
- 关于python项目路径导入自己写的库出错的一点思考
其实也是在写自己项目的时候遇到的,以前也遇到了但是一直采取的是回避的策略,这次总算弄清楚所以总结一下. 这个项目的顶级目录是medivac,他本身是一个python模块. 熟悉flask的人都知道,在 ...
- Delphi编码规范
以下是在之前的公司与别人共同参与制定的Delphi开发规范(5年前了,那时用的还是Delphi7,部分规则可能有些过时,但不整理了,觉得有用的人,自己整理成适合自己的开发规范吧), 目 录一.序 ...
- face detection,landmark, recognition with deeplearning
人脸特征点定位 Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks c ...
- 51nod 1092(lcs)回文字符串
题目:给你一个字符串,问添加最少的字符数目,使之成为回文串 解题思路:将字符串倒置,求出字符串和倒置串的最长公共子序列,字符串的长度减去lcs的长度就是了.. 代码:#include<iostr ...
- jenkins--svn+Email自动触发2(jenkins系统配置)
jenkins系统配置-SonarQube servers配置: 邮件通知设置: 邮件调试问题: 在 系统设置 --> Extended E-mail Notification: 找到 Enab ...