StandardScaler----计算训练集的平均值和标准差,以便测试数据集使用相同的变换

官方文档:

class sklearn.preprocessing.StandardScaler(copy=Truewith_mean=Truewith_std=True)

Standardize features by removing the mean and scaling to unit variance

通过删除平均值和缩放到单位方差来标准化特征

The standard score of a sample x is calculated as:

样本x的标准分数计算如下:

z = (x - u) / s

  where u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if with_std=False.

  其中u是训练样本的均值,如果with_mean=False,则为0

  s是训练样本的标准偏差,如果with_std=False,则为1

Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the transform method.

Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual features do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance).

For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected.

This scaler can also be applied to sparse CSR or CSC matrices by passing with_mean=False to avoid breaking the sparsity structure of the data.

Read more in the User Guide.

Parameters:
copy : boolean, optional, default True

If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned.

with_mean : boolean, True by default

If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory.

with_std : boolean, True by default

If True, scale the data to unit variance (or equivalently, unit standard deviation).

Attributes:
scale_ : ndarray or None, shape (n_features,)

Per feature relative scaling of the data. This is calculated using np.sqrt(var_). Equal to None when with_std=False.

New in version 0.17: scale_

mean_ : ndarray or None, shape (n_features,)

The mean value for each feature in the training set. Equal to None when with_mean=False.

var_ : ndarray or None, shape (n_features,)

The variance for each feature in the training set. Used to compute scale_. Equal to None when with_std=False.

n_samples_seen_ : int or array, shape (n_features,)

The number of samples processed by the estimator for each feature. If there are not missing samples, the n_samples_seen will be an integer, otherwise it will be an array. Will be reset on new calls to fit, but increments across partial_fit calls.

See also

scale
Equivalent function without the estimator API.
sklearn.decomposition.PCA
Further removes the linear correlation across features with ‘whiten=True’.

Notes

NaNs are treated as missing values: disregarded in fit, and maintained in transform.

For a comparison of the different scalers, transformers, and normalizers, see examples/preprocessing/plot_all_scaling.py.

Examples

>>>

>>> from sklearn.preprocessing import StandardScaler
>>> data = [[0, 0], [0, 0], [1, 1], [1, 1]]
>>> scaler = StandardScaler()
>>> print(scaler.fit(data))
StandardScaler(copy=True, with_mean=True, with_std=True)
>>> print(scaler.mean_)
[0.5 0.5]
>>> print(scaler.transform(data))
[[-1. -1.]
[-1. -1.]
[ 1. 1.]
[ 1. 1.]]
>>> print(scaler.transform([[2, 2]]))
[[3. 3.]]

Methods方法

fit(X[, y])

Compute the mean and std to be used for later scaling.

计算用于以后缩放的mean和std

fit_transform(X[, y])

Fit to data, then transform it.

适合数据,然后转换它

get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, copy]) Scale back the data to the original representation
partial_fit(X[, y]) Online computation of mean and std on X for later scaling.
set_params(**params) Set the parameters of this estimator.
transform(X[, y, copy])

Perform standardization by centering and scaling

通过居中和缩放执行标准化

__init__(copy=Truewith_mean=Truewith_std=True)[source]
fit(Xy=None)[source]

Compute the mean and std to be used for later scaling.

Parameters:
X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along the features axis.

y

Ignored

fit_transform(Xy=None**fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

使用可选参数fit_params是变换器适合X和Y,并返回X的变换版本

Parameters:
X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns:
X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:
deep : boolean, optional

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
params : mapping of string to any

Parameter names mapped to their values.

inverse_transform(Xcopy=None)[source]

Scale back the data to the original representation

Parameters:
X : array-like, shape [n_samples, n_features]

The data used to scale along the features axis.

copy : bool, optional (default: None)

Copy the input X or not.

Returns:
X_tr : array-like, shape [n_samples, n_features]

Transformed array.

partial_fit(Xy=None)[source]

Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This is intended for cases when fit is not feasible due to very large number of n_samples or because X is read from a continuous stream.

The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. “Algorithms for computing the sample variance: Analysis and recommendations.” The American Statistician 37.3 (1983): 242-247:

Parameters:
X : {array-like, sparse matrix}, shape [n_samples, n_features]

The data used to compute the mean and standard deviation used for later scaling along the features axis.

y

Ignored

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns:
self
transform(Xy=’deprecated’copy=None)[source]

Perform standardization by centering and scaling

Parameters:
X : array-like, shape [n_samples, n_features]

The data used to scale along the features axis.

y : (ignored)

Deprecated since version 0.19: This parameter will be removed in 0.21.

copy : bool, optional (default: None)

Copy the input X or not.

标准化数据-StandardScaler的更多相关文章

  1. numpy数组-标准化数据

    标准化数据的公式: (数据值 - 平均数) / 标准差 import numpy as np employment = np.array([ 55.70000076, 51.40000153, 50. ...

  2. sklearn 标准化数据的方法

    Sklearn 标准化数据 from __future__ import print_function from sklearn import preprocessing import numpy a ...

  3. pytorch torchversion标准化数据

     新旧标准差的关系

  4. 利用 pandas 进行数据的预处理——离散数据哑编码、连续数据标准化

    数据的标准化 数据标准化就是将不同取值范围的数据,在保留各自数据相对大小顺序不变的情况下,整体映射到一个固定的区间中.根据具体的实现方法不同,有的时候会映射到 [ 0 ,1 ],有时映射到 0 附近的 ...

  5. TGCA数据的标准化以及差异分析--转载

    转载果子学生信  https://mp.weixin.qq.com/s/Ph1O6V5RkxkyrKpVmB5ODA 前面我们从GDC下载了TCGA肿瘤数据库的数据,也能够把GDC下载的多个TCGA文 ...

  6. Matlab数据标准化——mapstd、mapminmax

    Matlab神经网络工具箱中提供了两个自带的数据标准化处理的函数——mapstd和mapminmax,本文试图解析一下这两个函数的用法. 一.mapstd mapstd对应我们数学建模中常使用的Z-S ...

  7. Scikit-Learn模块学习笔记——数据预处理模块preprocessing

    preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, ...

  8. 使用sklearn进行数据挖掘-房价预测(4)—数据预处理

    在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...

  9. Scikit-learn数据变换

    转载自:https://blog.csdn.net/Dream_angel_Z/article/details/49406573 本文主要是对照scikit-learn的preprocessing章节 ...

随机推荐

  1. oracle单行函数 之 时间函数

    select  systemdate from dual --得到时间 select systemdate+300 from dual  --日期 +数字=日期,表示若干天之后的日期 select s ...

  2. awk 基础入门

    简介 awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再 ...

  3. dataTable表头未对其解决方法

    本文为博主原创,未经允许不得转载: 在tab页中使用dataTable时,默认显示的dataTable表头与数据显示正常,另一个的datatable则表头与数据未对其. 检查元素发现,datatabl ...

  4. Shell脚本(三)

    摘自:菜鸟教程 http://www.runoob.com/linux/linux-shell-echo.html Shell命令 1. echo命令 字符串输出 echo "OK! \c& ...

  5. 常用模块(json/pickle/shelve/XML)

    一.json模块(重点) 一种跨平台的数据格式 也属于序列化的一种方式 介绍模块之前,三个问题: 序列化是什么? 我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化. 反序列化又是什么? 将 ...

  6. C# winform窗体间传值(使用委托或事件)

    窗体间传值 今天得空,刚好看到网上好多人再找winform窗体间传值的问题,由于昨天项目的优化的感觉不错,就写了个C# winform窗体间传值的demo,希望能给需要的人的带来帮助: 工程的源代码地 ...

  7. _killerstreak

    `count`连杀或终结连杀的数量(最大支持10个) `announceFlag` 0-不广播1-只广播连杀消息2-只广播终结连杀消息3-广播连杀与终结连杀消息 `rewId` 连杀奖励模板Id,对应 ...

  8. 【二十八】xml编程(dom\xpath\simplexml)

    1.xml基础概念 作用范围: 作为程序通讯的标准. 作为配置文件. 作为小型数据库. xml语法: <根标签> <标签 元素="元素值" ...>< ...

  9. overload、override、overwrite的介绍

    答:(1)overload(重载),即函数重载: ①在同一个类中: ②函数名字相同: ③函数参数不同(类型不同.数量不同,两者满足其一即可): ④不以返回值类型不同作为函数重载的条件. (2)over ...

  10. .net core 基础知识

    1.IOC(转:https://www.cnblogs.com/artech/p/inside-asp-net-core.html) IoC的全名Inverse of Control,翻译成中文就是“ ...