一道递推题目

得到递推关系为  f[n]=f[n-1]+f[n-3]+f[n-4];

用普通的枚举算法会超时

所以要用矩阵快速幂来加速

转化为矩阵即为:

+
1 0 1 1       F(N-1)  F(N)       
1 0 0 0  *    F(N-2)  =   F(N-1)   
0 1 0 0       F(N-3)  F(N-2)
0 0 1 0       F(N-4)  F(N-3)

1 0 1 1(n-4)       F(4)  F(N)       
1 0 0 0            *      F(3)  =   F(N-1)   
0 1 0 0                   F(2)  F(N-2)
0 0 1 0                   F(1)  F(N-3)

所以f(n) 为 矩阵的n-4次幂  的第一行 与已知的相乘    (n-4 为  n-3-1即可   这是差值 再加一为个数)

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; int n,k; int q[]={,,,,};
struct matrix{
int arr[][];
}; matrix multi( matrix a,matrix b )
{
matrix c;
for(int i=;i<;i++)
for(int j=;j<;j++){
c.arr[i][j]=;
for(int w=;w<;w++)
c.arr[i][j]=(c.arr[i][j]+a.arr[i][w]*b.arr[w][j]%k)%k;
}
return c;
} int fast(matrix a,int x){
matrix ans;
memset(ans.arr,,sizeof(ans.arr));
for(int i=;i<;i++)ans.arr[i][i]=; while(x){
if(x&){
ans=multi(ans,a);
}
x>>=;
a=multi(a,a);
}
int sum=;
for(int i=;i<;i++)
{
sum+=ans.arr[][i]*q[-i];
sum%=k;
}
return sum;
} int main(){ while(scanf("%d%d",&n,&k)==)
{
if(n<=){printf("%d\n",q[n]%k);continue;}
else
{
matrix a={,,,,,,,,,,,,,,,};
printf("%d\n",fast(a,n-)%k);
}
}
return ;
}

矩阵还是用结构体写方便。

Queuing HDU2604的更多相关文章

  1. hdu---(2604)Queuing(矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  2. 【递推+矩阵快速幂】【HDU2604】【Queuing】

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. [HDU2604]Queuing

    题目:Queuing 链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 分析: 1)将当前格和上一格合并当作一个状态,考虑下一个格子放0(m)还是1( ...

  4. HDU2604—Queuing

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 题目意思:n个人排队,f表示女,m表示男,包含子串‘fmf’和‘fff’的序列为O队列,否则为E ...

  5. HDU2604 Queuing 矩阵初识

    Queues and Priority Queues are data structures which are known to most computer scientists. The Queu ...

  6. HDU2604:Queuing(矩阵快速幂+递推)

    传送门 题意 长为len的字符串只由'f','m'构成,有2^len种情况,问在其中不包含'fmf','fff'的字符串有多少个,此处将队列换成字符串 分析 矩阵快速幂写的比较崩,手生了,多练! 用f ...

  7. hdu2604(递推,矩阵快速幂)

    题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...

  8. HDU2045/*HDU2604/*HDU2501/HDU2190 递推

    不容易系列之(3)-- LELE的RPG难题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/O ...

  9. Message Queuing(MSMQ)

    一.前言 MicroSoft Message Queuing(微软消息队列)是在多个不同的应用之间实现相互通信的一种异步传输模式,相互通信的应用可以分布于同一台机器上,也可以分布于相连的网络空间中的任 ...

随机推荐

  1. HTTP协议(下午茶)

    http://www.kancloud.cn/kancloud/tealeaf-http/43840   下午茶

  2. luogu P4162 [SCOI2009]最长距离

    传送门 可以枚举两个点然后计算答案,至于是否合法,就要看可不可以通过移不超过\(t\)个箱子使得两点连通,也可以看做找一条路径使得路径上的1个数不超过\(t\) 所以可以考虑最短路,相邻的点两两连边, ...

  3. slf4j的简单用法以及与log4j的区别

    之前在项目中用的日志记录器都是log4j的日志记录器,可是到了新公司发现都是slf4j,于是想着研究一下slf4j的用法. 注意:每次引入Logger的时候注意引入的jar包,因为有Logger的包太 ...

  4. weblogic对JSP预编译、weblogic读取JSP编译后的class文件、ant中weblogic.jspc预编译JSP

    我们都知道在weblogic中JSP是每次第一次访问的时候才会编译,这就造成第一次访问某个JSP的时候性能下降,有时候我们也希望JSP被编译成class然后打包在jar中实现隐藏JSP的功能,下面介绍 ...

  5. Spring+CXF整合来管理webservice(服务器启动发布webservice)

    Spring+CXF整合来管理webservice    实现步骤:      1. 添加cxf.jar 包(集成了Spring.jar.servlet.jar ),spring.jar包 ,serv ...

  6. Software development skills for data scientists

    Software development skills for data scientists Data scientists often come from diverse backgrounds ...

  7. UML和模式应用5:细化阶段(5)---系统顺序图

    1.前言 系统顺序图(SSD)是为阐述系统相关的输入和输出事件而快速.简单的创建的制品,它们是操作契约和对象设计的输入. SSD展示了直接与系统交互的外部参与者.系统(作为黑盒)以及由参与者发起的系统 ...

  8. nodejs 在线学习课堂

    http://ww***/class/5359f6f6ec7452081a7873d8

  9. XmlDocument根据节点的属性值获取节点

    string targetParm = string.Format("STUDENTS/STUDENT[@NO='{0}']", targetValue);//生成目标获取节点的参 ...

  10. python模块介绍- binascii:二进制和ASCII互转以及其他进制转换

    20.1 binascii:二进制和ASCII互转作用:二进制和ASCII互相转换. Python版本:1.5及以后版本 binascii模块包含很多在二进制和ASCII编码的二进制表示转换的方法.通 ...