P4568 [JLOI2011]飞行路线

题目描述

Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在\(n\)个城市设有业务,设这些城市分别标记为\(0\)到\(n-1\),一共有\(m\)种航线,每种航线连接两个城市,并且航线有一定的价格。

Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多\(k\)种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?

输入格式

数据的第一行有三个整数,\(n,m,k\),分别表示城市数,航线数和免费乘坐次数。

第二行有两个整数,\(s,t\),分别表示他们出行的起点城市编号和终点城市编号。

接下来有m行,每行三个整数,\(a,b,c\),表示存在一种航线,能从城市\(a\)到达城市\(b\),或从城市\(b\)到达城市\(a\),价格为\(c\)。

输出格式

只有一行,包含一个整数,为最少花费。

输入输出样例

输入 #1

5 6 1

0 4

0 1 5

1 2 5

2 3 5

3 4 5

2 3 3

0 2 100

输出 #1

8

说明/提示

对于30%的数据,\(2 \le n \le 50,1 \le m \le 300,k=0;\)

对于50%的数据,\(2 \le n \le 600,1 \le m \le 6000,0 \le k \le 1;\)

对于100%的数据,\(2 \le n \le 10000,1 \le m \le 50000\),\(0 \le k \le 10,0 \le s,t<n,0 \le a,b<n,a\neq b,0 \le c \le 1000\)

2018.12.10 增加一组 hack 数据

【思路】

分层图 + dijkstra

分层图板子题

如果想了解分层图请看这里

了解分层图

【题目大意】

从1到n跑

其中可以让k条路的耗时变为原来的一半

求最小耗时

【题目分析】

如果你不是第一次做分层图的话

那看到这k条路减半

一定会想到一个很有意思的算法分层图

分层图就是专门用来解决这种k条路减半的问题的

不过需要开很大的空间

开数组的时候要好好斟酌一下

不然很容易出问题

【核心思路】

正常建一遍图

然后赋值k遍

第i张图作为用了i次免费的机会

所以两张图之间是免费机会用的路

那就需要赋值为0

这样直接跑dijkstra就完全没有问题

【完整代码】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
struct point
{
int w,x;
bool operator < (const point & xx)const
{
return xx.w < w;
}
};
const int Max = 4000000;
struct node
{
int y,ne,z;
}a[Max];
int sum = 0,head[Max];
int d[Max]; void add(int x,int y,int z)
{
a[++ sum].y = y;
a[sum].ne = head[x];
a[sum].z = z;
head[x] = sum;
}
bool use[Max];
int s,t;
priority_queue<point>q;
void dj()
{
memset(d,0x3f,sizeof(d));
d[s] = 0;
q.push((point){0,s});
while(!q.empty())
{
point qwq = q.top();
q.pop();
int x = qwq.x,w = qwq.w;
if(use[x] == true)
continue;
else
use[x] = true;
for(register int i = head[x];i != 0;i = a[i].ne)
{
int awa = a[i].y;
if(d[awa] > d[x] + a[i].z)
{
d[awa] = d[x] + a[i].z;
if(use[awa] == false)
q.push((point){d[awa],awa});
}
}
}
}
int main()
{
int n,m,k;
cin >> n >> m >> k;
cin >> s >> t;
int x,y,z;
for(register int i = 1;i <= m;++ i)
{
cin >> x >> y >> z;
add(x,y,z),add(y,x,z);
for(register int j = 1;j <= k;++ j)
{
add(j * n + x,j * n + y,z);
add(j * n + y,j * n + x,z);
add((j - 1) * n + x,j * n + y,0);
add((j - 1) * n + y,j * n + x,0);
}
}
dj();
int M = 0x7fffffff;
for(register int i = 0;i <= k;++ i)
M = min(M,d[i * n + t]);
cout << M << endl;
return 0;
}

洛谷 P4568 [JLOI2011]飞行路线 题解的更多相关文章

  1. 洛谷 P4568 [JLOI2011]飞行路线 解题报告

    P4568 [JLOI2011]飞行路线 题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在\(n\)个城市设有业务,设这些城市分别标记为0到\(n−1\ ...

  2. 洛谷 P4568 [JLOI2011]飞行路线

    题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  3. [洛谷P4568][JLOI2011]飞行路线

    题目大意:最短路,可以有$k$条边无费用 题解:分层图最短路,建成$k$层,层与层之间的边费用为$0$ 卡点:空间计算出错,建边写错 C++ Code: #include <cstdio> ...

  4. 洛谷 4568 [JLOI2011] 飞行路线

    题目戳这里 一句话题意: 有n个点,m条边的有向图,最多可以把k条边变为0,求从起点到终点最短距离. Solution 首先看到这题目,感觉贼难,看起来像DP,貌似也有大佬这么做,但鉴于本蒟蒻思维能力 ...

  5. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  6. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  7. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  8. 洛谷P1577 切绳子题解

    洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...

  9. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

随机推荐

  1. 【WEB基础】HTML & CSS 基础入门(2)选取工具:VS2019安装使用

    前面 子曰“工欲善其事,必先利其器”.开始编写HTML代码前,我们该选择一款编辑工具,实际上,HTML作为标记语言,我们甚至可以直接用记事本来编写HTML代码,但记事本实在弱爆了.这里推荐使用Visu ...

  2. RStudio中安装factoextra包的问题

    最近在做一个R语言的小作业,其中聚类分析部分需要用到factoextra安装包,在RStudio中输入install.packages("factoextra")之后,就一直出现“ ...

  3. 利用onMouseOver和onMouseOut实现图像翻滚

    代码: <img src="images/001.jpg" alt="pic" onmouseover="this.src='images/00 ...

  4. Vue学习之webpack中使用vue(十七)

    一.包的查找规则: 1.在项目根目录中找有没有 node_modules 的文件夹: 2.在 node_modules 中根据包名,找对应的vue 文件夹: 3.在vue 文件夹中,找 一个叫做 pa ...

  5. ORACLE表、索引和分区详解

    ORACLE表.索引和分区 一.数据库表 每种类型的表都有不同的特性,分别应用与不同的领域 堆组织表 聚簇表(共三种) 索引组织表 嵌套表 临时表 外部表和对象表 1.行迁移 建表过程中可以指定以下两 ...

  6. Android为TV端助力之热修复原理

    通过源码我们知道Android加载类是通过ClassLoad类里面的findClass先去查找的,如下图所示 通过看源码我们知道,ClassLoad是一个抽象类,它本身并没有实现findclass() ...

  7. Guava Cache 工具类

    maven依赖 <dependency> <groupId>com.google.guava</groupId> <artifactId>guava&l ...

  8. springmvc的控制器是不是单例模式,如果是,有什么问题,怎么解决?

    默认情况下是单例模式, 在多线程进行访问的时候,有线程安全问题. 但是不建议使用同步,因为会影响性能. 解决方案,是在控制器里面不能写成员变量. 为什么设计成单例设计模式? 1.性能(不用每次请求都创 ...

  9. Centos7-新增硬盘挂载

    查看现有硬盘情况 df -h fdisk -l 查看新硬盘 ls /dev/sdb 具体操作 fdisk /dev/sdb m n #添加一个新的分区 p #创建主分区 w #保存并退出 partpr ...

  10. 网络基础知识(http请求)

    http请求的过程 域名解析----TCP连接 ----发送请求-----响应请求----获取html代码----浏览器渲染 TCP是主机对主机层的控制传输协议,提供可靠的连接服务 TCP的三次握手 ...