luoguP3704 [SDOI2017]数字表格
题意
默认\(n\leqslant m\)
所求即为:\(\prod\limits_{i=1}^n\prod\limits_{j=1}^mf[\gcd(i,j)]\)
枚举\(\gcd(i,j)\)变为:
\(\prod\limits_{k=1}^{n}f(k)^{\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=k]}\)
上面那个是莫比乌斯反演套路形式:
\(\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=k]\)
\(\sum\limits_{i=1}^{\frac{n}{k}}\sum\limits_{j=1}^{\frac{m}{k}}[\gcd(i,j)=1]\)
\(\sum\limits_{i=1}^{\frac{n}{k}}\sum\limits_{j=1}^{\frac{m}{k}}\sum\limits_{x|\gcd(i,j)}\mu(x)\)
\(\sum\limits_{x=1}^{\frac{n}{k}}\mu(x)\sum\limits_{i=1}^{\frac{n}{k}}\sum\limits_{j=1}^{\frac{m}{k}}[x|\gcd(i,j)]\)
\(\sum\limits_{x=1}^{\frac{n}{k}}\mu(x)\sum\limits_{i=1}^{\frac{n}{k*x}}\sum\limits_{j=1}^{\frac{m}{k*x}}1\)
\(\sum\limits_{x=1}^{\frac{n}{k}}\mu(x)\frac{n}{k*x}\frac{m}{k*x}\)
代回原式:
\(\prod\limits_{k=1}^{n}f(k)^{\sum\limits_{x=1}^{\frac{n}{k}}\mu(x)\frac{n}{k*x}\frac{m}{k*x}}\)
设\(T=k*x\),转而枚举\(T\):
\(\prod\limits_{T=1}^{n}\prod\limits_{d|T}f(d)^{\mu(\frac{T}{d})\frac{n}{T}\frac{m}{T}}\)
\(\prod\limits_{T=1}^{n}(\prod\limits_{d|T}f(d)^{\mu(\frac{T}{d})})^{\frac{n}{T}\frac{m}{T}}\)
显然指数部分可以除法分块,考虑如何求\(\prod\limits_{d|T}f(d)^{\mu(\frac{T}{d})}\):
设\(g(T)=\prod\limits_{d|T}f(d)^{\mu(\frac{T}{d})}\)
在算到\(f(d)\)时乘到\(g(T)\)即可。
答案即为:
\(\prod\limits_{T=1}^{n}g(T)^{\frac{n}{T}\frac{m}{T}}\)
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e6+10;
const ll mod=1e9+7;
int T,n,m;
ll ans=1;
ll f[maxn],g[maxn],mu[maxn],invf[maxn];
bool vis[maxn];
vector<int>prime;
inline ll power(ll x,ll k,ll mod)
{
ll res=1;
while(k)
{
if(k&1)res=res*x%mod;
x=x*x%mod;k>>=1;
}
return res;
}
inline void pre_work(int n)
{
g[0]=g[1]=1;
vis[1]=1;mu[1]=1;
for(int i=2;i<=n;i++)
{
g[i]=1;
if(!vis[i])prime.push_back(i),mu[i]=-1;
for(unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
mu[i*prime[j]]=-mu[i];
}
}
f[0]=0,f[1]=1;invf[1]=1;
for(int i=2;i<=n;i++)f[i]=(f[i-1]+f[i-2])%mod,invf[i]=power(f[i],mod-2,mod);
for(int i=1;i<=n;i++)
{
if(!mu[i])continue;
for(int j=i;j<=n;j+=i)
g[j]=g[j]*(mu[i]==1?f[j/i]:invf[j/i])%mod;
}
for(int i=2;i<=n;i++)g[i]=g[i]*g[i-1]%mod;
}
int main()
{
pre_work(1000000);
scanf("%d",&T);
while(T--)
{
ans=1;
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
for(int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans=ans*power(g[r]*power(g[l-1],mod-2,mod)%mod,1ll*(n/l)*(m/l)%(mod-1),mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
}
return 0;
}
luoguP3704 [SDOI2017]数字表格的更多相关文章
- BZOJ:4816: [Sdoi2017]数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 501 Solved: 222[Submit][Status ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 666 Solved: 312 Description Do ...
- P3704 [SDOI2017]数字表格
P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...
- [SDOI2017]数字表格 --- 套路反演
[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...
- 题解-[SDOI2017]数字表格
题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...
- [SDOI2017]数字表格 & [MtOI2019]幽灵乐团
P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...
- bzoj4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- [SDOI2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
随机推荐
- Vue 使用comouted计算属性
computed计算属性 使用方法见代码: <!doctype html> <html lang="en"> <head> <meta c ...
- vbs与其他语言进行交互编程(外存传参)
vbs没有自定义排序函数.无需自己造轮子,可以用其他语言来完成这个任务(在传递数据比较简单的情况下,例如只传递数组). 首先用5分钟写一个C++排序的代码.命名为“mysort.cpp”: #incl ...
- vue_day05
目录 vue前后端交互: vue 分离前后端交互: vue前端发送请求: vue请求插件--axios: main.js配置: 前端朝后端请求传参方式: django后端返回数据样式: vue配置El ...
- IPv6 地址生命周期
在preferred time和valid lifetime之间叫做deprecated 状态,当地址达到这个时间段的时候,地址不能主动的发起连接只能是被动的接受连接,过了valid lifetime ...
- R语言- 实验报告 - 利用R语言脚本与Java相互调用
一. 实训内容 利用R语言对Java项目程序进行调用,本实验包括利用R语言对java的.java文件进行编译和执行输出. 在Java中调用R语言程序.本实验通过eclipse编写Java程序的方式,调 ...
- 5分钟上手:本地开发环境启动HTTPS
今天我们访问的所有网站几乎都是受HTTPS保护的.如果你的站点还没有,那你应该使用它.使用HTTPS保护服务器也意味着你不能从不是HTTPS服务器向此服务器发送请求.这给使用本地开发环境的开发人员带来 ...
- MySQL for OPS 01:简介 / 安装初始化 / 用户授权管理
写在前面的话 取这个标题的目的很简单,MySQL 在中小型企业中一般都是由运维来维护的,除非数据很重要的公司可能会聘请 DBA. 但是运维一般存在由于所需要了解的东西很多很杂,导致学习过程中很多东西只 ...
- yum 找不到程序,yum更换国内阿里源
使用百度云服务器,发现百度yum源非常不稳定,果断采用阿里源,操作步骤如下: 一.备份 $ cd /etc/yum.repos.d/ $ mv baidu-bcm.repo baidu-bcm.rep ...
- Json序列化与反序列化(对象与Json字符串的转换)--C#
public class JsonHelper { #region Json序列化与反序列化 /// <summary> /// 将json转化为对象 /// (需要提前构造好结构一致的M ...
- QUrl的使用,特别是对含特殊字符的字符串进行 URL 格式化编码
QUrl提取与写入参数QUrl url("www.baidu.com?a=666&b=888"); url.addQueryItem("); qDebug()&l ...