HDU 4005 The war(边双连通)
题意
给定一张 \(n\) 个点 \(m\) 条边的无向连通图,加入一条边,使得图中权值最小的桥权值最大,如果能使图中没有桥则输出 \(-1\)。
思路
先对原图边双缩点,然后变成了一棵树。在树上加一条边等价于使一条路径上的边都不是桥,那么原题转化为在树上删一条路径,使得最小的边最大。固定一条最小的边之后模拟即可。
代码
#include<bits/stdc++.h>
#define FOR(i, x, y) for(int i = (x), i##END = (y); i <= i##END; ++i)
#define DOR(i, x, y) for(int i = (x), i##END = (y); i >= i##END; --i)
template<typename T, typename _T> inline bool chk_min(T &x, const _T &y) {return y < x ? x = y, 1 : 0;}
template<typename T, typename _T> inline bool chk_max(T &x, const _T &y) {return x < y ? x = y, 1 : 0;}
typedef long long ll;
const int N = 10005;
const int M = 100005;
template<const int N, const int M, typename T> struct Linked_List
{
int head[N], nxt[M], tot; T to[M];
Linked_List() {clear();}
T &operator [](const int x) {return to[x];}
void clear() {memset(head, -1, sizeof(head)), tot = 0;}
void add(int u, T v) {to[tot] = v, nxt[tot] = head[u], head[u] = tot++;}
#define EOR(i, G, u) for(int i = G.head[u]; ~i; i = G.nxt[i])
};
struct edge {int to, cost;};
Linked_List<N, M << 1, edge> G;
Linked_List<N, N << 1, edge> T;
int dfn[N], low[N], stk[N], bel[N], dfn_idx, tp, bcc;
int miner[N], son[N];
int n, m;
void tarjan(int u, int fa_e)
{
dfn[u] = low[u] = ++dfn_idx, stk[++tp] = u;
EOR(i, G, u)
{
if(i == (fa_e ^ 1)) continue;
int v = G[i].to;
if(!dfn[v]) tarjan(v, i), chk_min(low[u], low[v]);
else if(dfn[v] < dfn[u]) chk_min(low[u], dfn[v]);
}
if(dfn[u] == low[u])
{
bcc++;
do bel[stk[tp]] = bcc; while(stk[tp--] != u);
}
}
void dfs(int u, int f)
{
miner[u] = 2e9, son[u] = 0;
EOR(i, T, u)
{
int v = T[i].to, w = T[i].cost;
if(v == f) continue;
dfs(v, u);
if(chk_min(miner[u], miner[v])) son[u] = v;
if(chk_min(miner[u], w)) son[u] = v;
}
}
int redfs(int u, int f)
{
if(!son[u]) return 2e9;
int res = redfs(son[u], u);
EOR(i, T, u)
{
int v = T[i].to, w = T[i].cost;
if(v == f || v == son[u]) continue;
chk_min(res, miner[v]);
chk_min(res, w);
}
return res;
}
int main()
{
while(~scanf("%d%d", &n, &m))
{
G.tot = T.tot = 0;
FOR(i, 1, n) G.head[i] = T.head[i] = -1;
FOR(i, 1, n) dfn[i] = 0;
bcc = dfn_idx = 0;
FOR(i, 1, m)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
G.add(u, (edge){v, w}), G.add(v, (edge){u, w});
}
tarjan(1, -1);
int s, t, mi = 2e9;
FOR(u, 1, n) EOR(i, G, u)
{
int v = G[i].to, w = G[i].cost;
if(bel[u] < bel[v])
{
if(chk_min(mi, w)) s = bel[u], t = bel[v];
T.add(bel[u], (edge){bel[v], w}), T.add(bel[v], (edge){bel[u], w});
}
}
dfs(s, t), dfs(t, s);
int res = std::min(redfs(s, t), redfs(t, s));
printf("%d\n", (res > 1e9 ? -1 : res));
}
return 0;
}
HDU 4005 The war(边双连通)的更多相关文章
- HDU 4005 The war(双连通好题)
HDU 4005 The war pid=4005" target="_blank" style="">题目链接 题意:给一个连通的无向图.每条 ...
- HDU 4005 The war 双连通分量 缩点
题意: 有一个边带权的无向图,敌人可以任意在图中加一条边,然后你可以选择删除任意一条边使得图不连通,费用为被删除的边的权值. 求敌人在最优的情况下,使图不连通的最小费用. 分析: 首先求出边双连通分量 ...
- hdu 4005 The war
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4005 In the war, the intelligence about the enemy is ...
- HDU 3749 Financial Crisis (点双连通+并查集)
<题目连接> 题目大意: 给你一个(保证输入无重边,无自环)无向图,然后有下面Q条询问,每条询问为:问你u点与v点之间有几条(除了首尾两点外,其他点不重复)的路径.如果有0条或1条输出0或 ...
- HDU 4005 The war Tarjan+dp
The war Problem Description In the war, the intelligence about the enemy is very important. Now, o ...
- HDU 4005 The war (图论-tarjan)
The war Problem Description In the war, the intelligence about the enemy is very important. Now, our ...
- HDU 2460 Network(双连通+树链剖分+线段树)
HDU 2460 Network 题目链接 题意:给定一个无向图,问每次增加一条边,问个图中还剩多少桥 思路:先双连通缩点,然后形成一棵树,每次增加一条边,相当于询问这两点路径上有多少条边,这个用树链 ...
- HDU 3849 By Recognizing These Guys, We Find Social Networks Useful(双连通)
HDU 3849 By Recognizing These Guys, We Find Social Networks Useful pid=3849" target="_blan ...
- hdu 4612 Warm up 双连通缩点+树的直径
首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...
随机推荐
- Vue.js 源码分析(二十三) 指令篇 v-show指令详解
v-show的作用是将表达式值转换为布尔值,根据该布尔值的真假来显示/隐藏切换元素,它是通过切换元素的display这个css属性值来实现的,例如: <!DOCTYPE html> < ...
- 如何安装redis
主要方式有四种:1.使用 Docker 安装.2.通过 Github 源码编译.3.直接安装 apt-get install(Ubuntu).yum install(RedHat) 或者 brew i ...
- CodeForce 577B Modulo Sum
You are given a sequence of numbers a1, a2, ..., an, and a number m. Check if it is possible to choo ...
- Python【day 11】迭代器
迭代器-用 1.迭代器的概念 1.可迭代对象-iterable str.list.tuple.dict.set.open().range() 2.可迭代对象的概念: 其数据类型的执行方法中含有__it ...
- C/C++中new的使用规则
本人未重视new与指针的使用,终于,终于在前一天船翻了,而且没有爬上岸: 故此,今特来补全new的用法,及其一些规则: 话不多说 C++提供了一种“动态内存分配”机制,使得程序可以在运行期间,根据实际 ...
- 虚拟机中安装Kali遇到的问题及解决方法
title: 虚拟机中安装Kali遇到的问题及解决方法 date: 2018-11-25 12:25:43 tags: 安全 --- 关于Kali版本选择 kail官方下载页面 虚拟机中当然就下载虚拟 ...
- linux 进程通信之 守护进程
守护进程(Daemon) Daemon(精灵)进程,是linux中的后台服务进程,通常独立于控制终端并且周期性地执行某种任务或等待处理某些发生的时间.一般采用以d结尾的名字.从下面的进程信息可以看出, ...
- springboot项目打成jar包后台运行在linux上
背景:springboot2为为主体搭建的项目,直接打成jar包,上传到linux上面 启动项目:java -jar xx.jar 这样很方便,但是不能关闭窗口,否则项目就停了 后台启动: nohup ...
- [linux] 进程五状态模型
运行态:该进程正在执行:就绪态:进程做好了准备,只要有机会就开始执行:阻塞态:进程在某些事件发生前不能执行,如I/O 操作完成:新建态:刚刚创建的进程,操作系统还没有把它加入到可执行进程组中.通常是进 ...
- shell 多行重定向方法(多重嵌套)
这里讲的是多重嵌套.没用过 EOF的朋友请参考其他基础贴 在自动化运维中,常常需要shell脚本.在自动化创建脚本时,会遇到脚本内容里有用EOF重定向到配置文件的代码. 这样就不能用EOF来创建脚本了 ...