有很多概念需要明确区分:

人有23对染色体,其中22对常染色体autosome,另外一对为性染色体sex chromosome,XX为女,XY为男。

染色体区带命名:在标示一特定的带时需要包括4项:①染色体号;②臂的符号;③区号;④在该区内的带号。

1p22表示为1号染色体短臂2区2带。

等位基因其实是一个集合,在同一个locus出现得基因型互为等位基因。Aa不能叫等位基因,正确的逻辑是:A和a是一组等位基因。由等位基因可以定义纯合和杂合。

二倍体与多倍体细胞的某些染色体上,在同一基因座上有相同的等位基因,这类细胞称为纯合子/同型合子(homozygous)。若是相同基因座上含有不同的等位基因,则称作杂合子/异型合子(heterozygous)。

summary statistic顾名思义,就和R里面的summary函数一样,是对GWAS数据的一个概括总结,包含了结果中最核心的信息。

ebi也提供了很多GWAS研究summary statistic的结果下载,https://www.ebi.ac.uk/gwas/summary-statistics

GWAS的基本原理

如何跑GWAS?

转到姊妹篇:GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

Power

Effect size

Major allele,

Minor allele,

Minor allele frequency (MAF),

Missingness per genotype,

Missingness per individuals,

metrics that we look at include

linkage disequilibrium (LD),

variance inflation factor (VIF),

runs of homozygosity (ROH),

These provide a broad 'summary' of the data and allow us to appropriately set thresholds for quality control. It would be wrong, for example, to run a statistical test on a genotype with high missingness because the resulting P value would be misleading and could lead to erroneous conclusions from the data.

PLINK is usually the 'go to' program for analysing GWAS data, but there are other alternatives. It is also possible to read PLINK data into R and do your own analyses, but for now there are not many programs to do that.

Further information can be found here: http://zzz.bwh.harvard.edu/plink/summary.shtml

A tutorial on conducting genome‐wide association studies: Quality control and statistical analysis

Clumping: This is a procedure in which only the most significant SNP (i.e., lowest p value) in each LD block is identified and selected for further analyses. This reduces the correlation between the remaining SNPs, while retaining SNPs with the strongest statistical evidence.

Co‐heritability: This is a measure of the genetic relationship between disorders. The SNP‐based co‐heritability is the proportion of covariance between disorder pairs (e.g., schizophrenia and bipolar disorder) that is explained by SNPs.

Gene: This is a sequence of nucleotides in the DNA that codes for a molecule (e.g., a protein)

Heterozygosity: This is the carrying of two different alleles of a specific SNP. The heterozygosity rate of an individual is the proportion of heterozygous genotypes. High levels of heterozygosity within an individual might be an indication of low sample quality whereas low levels of heterozygosity may be due to inbreeding.

Individual‐level missingness: This is the number of SNPs that is missing for a specific individual. High levels of missingness can be an indication of poor DNA quality or technical problems.

Linkage disequilibrium (LD): This is a measure of non‐random association between alleles at different loci at the same chromosome in a given population. SNPs are in LD when the frequency of association of their alleles is higher than expected under random assortment. LD concerns patterns of correlations between SNPs.

Minor allele frequency (MAF): This is the frequency of the least often occurring allele at a specific location. Most studies are underpowered to detect associations with SNPs with a low MAF and therefore exclude these SNPs.

Population stratification: This is the presence of multiple subpopulations (e.g., individuals with different ethnic background) in a study. Because allele frequencies can differ between subpopulations, population stratification can lead to false positive associations and/or mask true associations. An excellent example of this is the chopstick gene, where a SNP, due to population stratification, accounted for nearly half of the variance in the capacity to eat with chopsticks (Hamer & Sirota, 2000).

Pruning: This is a method to select a subset of markers that are in approximate linkage equilibrium. In PLINK, this method uses the strength of LD between SNPs within a specific window (region) of the chromosome and selects only SNPs that are approximately uncorrelated, based on a user‐specified threshold of LD. In contrast to clumping, pruning does not take the p value of a SNP into account.

Relatedness: This indicates how strongly a pair of individuals is genetically related. A conventional GWAS assumes that all subjects are unrelated (i.e., no pair of individuals is more closely related than second‐degree relatives). Without appropriate correction, the inclusion of relatives could lead to biased estimations of standard errors of SNP effect sizes. Note that specific tools for analysing family data have been developed.

Sex discrepancy: This is the difference between the assigned sex and the sex determined based on the genotype. A discrepancy likely points to sample mix‐ups in the lab. Note, this test can only be conducted when SNPs on the sex chromosomes (X and Y) have been assessed.

Single nucleotide polymorphism (SNP): This is a variation in a single nucleotide (i.e., A, C, G, or T) that occurs at a specific position in the genome. A SNP usually exists as two different forms (e.g., A vs. T). These different forms are called alleles. A SNP with two alleles has three different genotypes (e.g., AA, AT, and TT).

SNP‐heritability: This is the fraction of phenotypic variance of a trait explained by all SNPs in the analysis.

SNP‐level missingness: This is the number of individuals in the sample for whom information on a specific SNP is missing. SNPs with a high level of missingness can potentially lead to bias.

Summary statistics: These are the results obtained after conducting a GWAS, including information on chromosome number, position of the SNP, SNP(rs)‐identifier, MAF, effect size (odds ratio/beta), standard error, and p value. Summary statistics of GWAS are often freely accessible or shared between researchers.

The Hardy–Weinberg (dis)equilibrium (HWE) law: This concerns the relation between the allele and genotype frequencies. It assumes an indefinitely large population, with no selection, mutation, or migration. The law states that the genotype and the allele frequencies are constant over generations. Violation of the HWE law indicates that genotype frequencies are significantly different from expectations (e.g., if the frequency of allele A = 0.20 and the frequency of allele T = 0.80; the expected frequency of genotype AT is 2*0.2*0.8 = 0.32) and the observed frequency should not be significantly different. In GWAS, it is generally assumed that deviations from HWE are the result of genotyping errors. The HWE thresholds in cases are often less stringent than those in controls, as the violation of the HWE law in cases can be indicative of true genetic association with disease risk.


Meta-analysis

Generally, if a sample includes multiple ethnic groups (e.g., Africans, Asians, and Europeans), it is recommended to perform tests of association in each of the ethnic groups separately and to use appropriate methods, such as meta‐analysis (Willer, Li, & Abecasis, 2010), to combine the results.

Fast and efficient meta‐analysis of genomewide association scans

GWAS 全基因组关联分析 | summary statistic 概括统计 | meta-analysis 综合分析的更多相关文章

  1. GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

    现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...

  2. 【GWAS文献解读】疟原虫青蒿素抗药性的全基因组关联分析

    英文名:Genetic architecture of artemisinin-resistant Plasmodium falciparum 中文名:疟原虫青蒿素抗药性的全基因组关联分析 期刊:Na ...

  3. 全基因组关联分析(GWAS)的计算原理

    前言 关于全基因组关联分析(GWAS)原理的资料,网上有很多. 这也是我写了这么多GWAS的软件教程,却从来没有写过GWAS计算原理的原因. 恰巧之前微博上某位小可爱提问能否写一下GWAS的计算原理. ...

  4. 全基因组关联分析(Genome-Wide Association Study,GWAS)流程

    全基因组关联分析流程: 一.准备plink文件 1.准备PED文件 PED文件有六列,六列内容如下: Family ID Individual ID Paternal ID Maternal ID S ...

  5. 一行命令学会全基因组关联分析(GWAS)的meta分析

    为什么需要做meta分析 群体分层是GWAS研究中一个比较常见的假阳性来源. 也就是说,如果数据存在群体分层,却不加以控制,那么很容易得到一堆假阳性位点. 当群体出现分层时,常规手段就是将分层的群体独 ...

  6. 全基因组关联分析(GWAS):为何我的QQ图那么飘

    前段时间有位小可爱问我,为什么她的QQ图特别飘,如果你不理解怎样算飘,请看下图: 理想的QQ图应该是这样的: 我当时的第一反应是:1)群体分层造成的:2)表型分布有问题.因此让她检查一下数据的群体分层 ...

  7. 全基因组关联分析(GWAS)扫不出信号怎么办(文献解读)

    假如你的GWAS结果出现如下图的时候,怎么办呢?GWAS没有如预期般的扫出完美的显著信号,也就没法继续发挥后续研究的套路了. 最近,nature发表了一篇文献“Common genetic varia ...

  8. R语言画全基因组关联分析中的曼哈顿图(manhattan plot)

    1.在linux中安装好R 2.准备好画曼哈顿图的R脚本即manhattan.r,manhattan.r内容如下: #!/usr/bin/Rscript #example : Rscript plot ...

  9. 全基因组关联分析学习资料(GWAS tutorial)

    前言 很多人问我有没有关于全基因组关联分析(GWAS)原理的书籍或者文章推荐. 其实我个人觉得,做这个分析,先从跑流程开始,再去看原理. 为什么这么说呢,因为对于初学者来说,跑流程就像一个大黑洞,学习 ...

随机推荐

  1. 微信支付接口--超详细带注释代码--Demo

    如果本文对你有用,请爱心点个赞,提高排名,帮助更多的人.谢谢大家!❤ 如果解决不了,可以在文末进群交流. 如果对你有帮助的话麻烦点个[推荐]~最好还可以follow一下我的GitHub~感谢观看! 微 ...

  2. 「8-27

    没有别的目的, 是最近发现一个小软件, 用起来感觉很不错, 所以想分享给大家. 首先这是一个 macOS 软件, 它的功能也很简单, 就是在菜单栏显示日期时间, 点按它可以显示日历, 没错, 简单到是 ...

  3. 解决linux下创建用户时出现 Creating mailbox file: 文件已存在

    原来linux下添加用户后,会在系统里自动加一个邮箱(系统邮箱),路径是:/var/spool/mail/用户名.      可以直接用命令#rm -rf /var/spool/mail/用户名    ...

  4. Android笔记(五十九)Android总结:四大组件——Service篇

    什么是服务? 服务(service)是Android中实现程序后台运行的解决方案,适用于去执行那些不需要和用户交互并且还需要长期运行的任务.服务的运行不依赖于任何用户界面. 服务运行在主线程中,所以在 ...

  5. 2019牛客多校第一场 A.Equivalent Prefixes

    题目描述 Two arrays u and v each with m distinct elements are called equivalent if and only if RMQ(u,l,r ...

  6. (java)selenium webdriver学习,选择模块,点击下一页,获取当前url

    selenium webdriver学习,选择模块,点击下一页,获取当前url 查找下一页有多种方法,这里列举两种: isSelected()函数用于判断是否点击选中,返回Boolean类型 impo ...

  7. python logging 重定向print(标准输入输出)

    重定向print输出到Mongo celery 本身用到logging.info 会输出 是celery的问题,还是logging初始化的时候就会有输出? 好像是celery 配合logging的问题 ...

  8. Tensorflow细节-P199-数据集

    数据集的基本使用方法 import tempfile import tensorflow as tf input_data = [1, 2, 3, 5, 8] # 这不是列表吗,为什么书里叫数组 da ...

  9. thinkpadT470P安装问题

    [问题描述]: 最近在将Thinkpad E430c的ubuntu系统重装成windows 7的过程中,出现了装好win7系统后,开机自动进入boot menu界面的问题,而且不论你选择从光驱还是硬盘 ...

  10. 运算符 & | ^ ~ >> << 讲解

    字节”是byte,“位”是bit :1 byte = 8 bit : char 在java中是2个字节.java采用unicode,2个字节(16位)来表示一个字符. char 16位2个字节 byt ...