【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
原文地址:
https://www.cnblogs.com/steven-yang/p/5686473.html
-----------------------------------------------------------------------------------------------------------------
前言
最近在看Peter Harrington写的“机器学习实战”,这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能。
这个思路称之为Adaboost算法,是对其它算法组合的一种方式。
我们可以看出弱算法是同类的算法,也就是说,它们是基于相同的算法,只不过参数不同。这样元算法在训练算法的步骤中就好容易控制。
注:也有其它的的元算法,可以针对不同算法的。
基本概念
- 元算法(meta-algorithm),是对其它算法组合的一种方式。也称为集成方法(ensemble method)。
- 弱算法:准确度较低的算法。元算法通过组合多个弱算法来提高准确率。
- 强算法:可以认为是组合后的算法。
- boosting : 是一种元算法,将多个弱算法变成强算法的算法族。除了AdsBoost,还有LPBoost, TotalBoost, BrownBoost, xgboost, MadaBoost, LogitBoost, and others.
- Adaboost : Adaptive Boosting的简称。一个具体的boosting算法。本章就是介绍这个算法。
详解Adaboost
说明:书中弱算法是一个单层决策树算法,返回的是一个二类分类结果(-1, 1)。所以书中Adaboost也是一个二类分类算法。
Adaboost训练算法
- 输入
- 样本数据
- 弱算法的数量
- 输出
- 一个弱算法数组(弱算法参数,弱算法权重
)
- 一个弱算法数组(弱算法参数,弱算法权重
- 逻辑
在一个迭代中(弱算法数量)
计算当前算法的参数
计算当前算法的错误率
计算当前算法的权重
计算下次样本数据的权重
计算当前的样本数据错误数,如果是0,退出。
解释:
假如有1000个sample,有100个sample被分错类,则:
可以看出错误的sample占的比例越小,下次的权重是二次方级数增大。
Adaboost分类算法
- 输入
- 分类数据
- 弱算法数组
- 输出
- 分类结果
- 逻辑
在一个迭代中(弱算法数量)
用当前弱算法计算分类结果$classified_i$
计算强分类结果(使用下面的公式)
返回分类结果
AdaBoost分类器中计算公式
参考
- Machine Learning in Action by Peter Harrington
- Boosting (machine learning)
-------------------------------------------------------------------------------------
【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能的更多相关文章
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- 《机器学习实战第7章:利用AdaBoost元算法提高分类性能》
import numpy as np import matplotlib.pyplot as plt def loadSimpData(): dataMat = np.matrix([[1., 2.1 ...
- 利用AdaBoost元算法提高分类性能
当做重要决定时,大家可能都会吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法背后的思路.元算法是对其他算法进行组合的一种方式. 自举汇聚法(bootstrap aggr ...
- 第七章:利用AdaBoost元算法提高分类性能
本章内容□ 组合相似的分类器来提髙分类性能□应用AdaBoost算法□ 处理非均衡分类问题
- 监督学习——AdaBoost元算法提高分类性能
基于数据的多重抽样的分类器 可以将不通的分类器组合起来,这种组合结果被称为集成方法(ensemble method)或者元算法(meta-algorithom) bagging : 基于数据随机抽样的 ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 使用 AdaBoost 元算法提高分类器性能
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的 ...
- 第九篇:使用 AdaBoost 元算法提高分类器性能
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的 ...
- 机器学习实战 - 读书笔记(14) - 利用SVD简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基 ...
随机推荐
- 《The One!团队》第八次作业:ALPHA冲刺(一)
项目 内容 作业所属课程 所属课程 作业要求 作业要求 团队名称 < The One !> 作业学习目标 (1)掌握软件测试基础技术.(2)学习迭代式增量软件开发过程(Scrum) 第一天 ...
- 远程连接Linux mysql报错:Access denied for user ‘root’@‘localhost’(using password: YES)的解决方法
在新安装好的Centos7上刚安装好mysql,准备进去看看,但是登陆的时候,发现报错啦: ERROR 1045 (28000): Access denied for user 'root'@'loc ...
- php自定义函数之匿名函数
所谓匿名,就是没有名字. 匿名函数,也就是没有函数名的函数.直线电机参数 匿名函数的第一种用法,直接把赋数赋值给变量,调用变量即为调用函数. 匿名函数的写法比较灵活. 1.变量函数式的匿名函数 < ...
- vs 在高分屏下开发 winform 配置
一.窗体控件大小 第一种方法:使用网格避免整除误差 在选项中将Windows窗体设计器的LayoutMode(布局模式)改成SnapToGrid(对齐到网格),并将Default Grid Cell ...
- Docker+GitLab+Jenkins+kubernetes实现DevOps 持续化集成和持续化部署概念图
Docker+GitLab+Jenkins+kubernetes实现DevOps 持续化集成和持续化部署概念图 转载自:原创 IT综合 作者:百联达 时间:2017-05-09 15:48:08 41 ...
- RookeyFrame 字典 新增和绑定
原文:https://www.cnblogs.com/rookey/p/10856657.html 注意: 数据字典 -> 新增 把“是否生效”勾上 是否生效都要勾上哦 !!! 应该自动勾上才对 ...
- PHP安装mysql.so扩展及相关PHP.ini 配置参数说明
在PHP中mysql_connect模块已经逐渐被弃用,我在搭建环境时也没有再安装mysql扩展,但是今天在维护一个老项目时,出现报错 Fatal error: Uncaught Error: Cal ...
- 18、TaskScheduler原理剖析与源码分析
一.源码分析 ###入口 ###org.apache.spark.scheduler/DAGScheduler.scala // 最后,针对stage的task,创建TaskSet对象,调用taskS ...
- Python逆向(四)—— Python内置模块dis.py源码详解
一.前言 上一节我们对Python编译及反汇编做了讲解,大家知道dis模块可以将编译好的pyc文件中提取出来的PyCodeObject反汇编为可以阅读字节码形式.本节我们对dis模块中的源码进行详细的 ...
- P1016 旅行家的预算——贪心
P1016 旅行家的预算 贪心求,在当前点如果能到达距离最近的油价比他小的就直接去油价比他小的, 如果在可行范围内没有比他油价小的,就加满开到可行范围内油价最小的点: 这么做是对的,我不会证明: 还有 ...