【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
原文地址:
https://www.cnblogs.com/steven-yang/p/5686473.html
-----------------------------------------------------------------------------------------------------------------
前言
最近在看Peter Harrington写的“机器学习实战”,这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能。
这个思路称之为Adaboost算法,是对其它算法组合的一种方式。
我们可以看出弱算法是同类的算法,也就是说,它们是基于相同的算法,只不过参数不同。这样元算法在训练算法的步骤中就好容易控制。
注:也有其它的的元算法,可以针对不同算法的。
基本概念
- 元算法(meta-algorithm),是对其它算法组合的一种方式。也称为集成方法(ensemble method)。
- 弱算法:准确度较低的算法。元算法通过组合多个弱算法来提高准确率。
- 强算法:可以认为是组合后的算法。
- boosting : 是一种元算法,将多个弱算法变成强算法的算法族。除了AdsBoost,还有LPBoost, TotalBoost, BrownBoost, xgboost, MadaBoost, LogitBoost, and others.
- Adaboost : Adaptive Boosting的简称。一个具体的boosting算法。本章就是介绍这个算法。
详解Adaboost
说明:书中弱算法是一个单层决策树算法,返回的是一个二类分类结果(-1, 1)。所以书中Adaboost也是一个二类分类算法。
Adaboost训练算法
- 输入
- 样本数据
- 弱算法的数量
- 输出
- 一个弱算法数组(弱算法参数,弱算法权重)
- 逻辑
在一个迭代中(弱算法数量)
计算当前算法的参数
计算当前算法的错误率
计算当前算法的权重
计算下次样本数据的权重
计算当前的样本数据错误数,如果是0,退出。
解释:
假如有1000个sample,有100个sample被分错类,则:
可以看出错误的sample占的比例越小,下次的权重是二次方级数增大。
Adaboost分类算法
- 输入
- 分类数据
- 弱算法数组
- 输出
- 分类结果
- 逻辑
在一个迭代中(弱算法数量)
用当前弱算法计算分类结果$classified_i$
计算强分类结果(使用下面的公式)
返回分类结果
AdaBoost分类器中计算公式
参考
- Machine Learning in Action by Peter Harrington
- Boosting (machine learning)
-------------------------------------------------------------------------------------
【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能的更多相关文章
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- 《机器学习实战第7章:利用AdaBoost元算法提高分类性能》
import numpy as np import matplotlib.pyplot as plt def loadSimpData(): dataMat = np.matrix([[1., 2.1 ...
- 利用AdaBoost元算法提高分类性能
当做重要决定时,大家可能都会吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法背后的思路.元算法是对其他算法进行组合的一种方式. 自举汇聚法(bootstrap aggr ...
- 第七章:利用AdaBoost元算法提高分类性能
本章内容□ 组合相似的分类器来提髙分类性能□应用AdaBoost算法□ 处理非均衡分类问题
- 监督学习——AdaBoost元算法提高分类性能
基于数据的多重抽样的分类器 可以将不通的分类器组合起来,这种组合结果被称为集成方法(ensemble method)或者元算法(meta-algorithom) bagging : 基于数据随机抽样的 ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 使用 AdaBoost 元算法提高分类器性能
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的 ...
- 第九篇:使用 AdaBoost 元算法提高分类器性能
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的 ...
- 机器学习实战 - 读书笔记(14) - 利用SVD简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基 ...
随机推荐
- Not so Mobile UVA - 839(二叉树的先序遍历)
#include<iostream> using namespace std; int solve(int &W) /*这里一定要用引用,为了赋给它值*/ { int wl, dl ...
- Eclips+ADT+SDK构建android开发环境及android自动化测试开发环境
一. 需要用到的包: 1.adt-bundle-windows-x86_64-20140702.zip+JDK+ant 2.ant下载地址:http://ant.apache.org/bindownl ...
- IT公司该如何落实机器学习?
Cisco发布的总结报告<泽字节时代:趋势和分析>中指出:2016年末,全球年度互联网流量将突破ZB大关(1ZB泽字节:1000EB艾字节),并将于2020年达到2.3ZB;互联网的流量将 ...
- python_并发编程——多进程的第二种启动方式
1.多进程的第二种启动方式 import os from multiprocessing import Process # 创建一个自定义类,继承Process类 class MyProcess(Pr ...
- z-tree的使用bug
最近折腾了下z-tree,这个存在一个bug: 新增icon出不来,废话少说上代码: <style type="text/css"> .ztree li span.bu ...
- MySQL Innodb引擎调优
介绍: Innodb给MYSQL提供了具有提交,回滚和崩溃恢复能力的事务安全(ACID兼容)存储引擎.Innodb锁定在行级并且也在SELECT语句提供一个Oracle风格一致的非锁定读.这些特色增加 ...
- The Last Goodbye 电影《霍比特人3:五军之战》插曲
https://music.163.com/#/song?id=29755223 I saw the light fade from the sky我看到天空褪去色彩On the wind I hea ...
- C语言实现的简单银行存取款程序 请输入如下数字命令
#include <stdio.h> int main(void) { //提供变量 cmd balance(余额) deposit(存款) withdraw(取款) //利用while做 ...
- 洛谷 P1725 琪露诺 题解
P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是 ...
- 洛谷P3522 TEM-temperature
题目 单调队列+阅读理解 简化题意. 找到一个最长的区间使得区间每个点的r要大于该点之前的点的l. 然后可以用单调队列维护单调递减的l.最后尺取法O(n)枚举所有区间并取最大值. 单调队列可以快速找某 ...