句子的依赖结构表现在哪些单词依赖哪些单词。单词之间的这种关系及可以表示为优先级之间的关系等。

Dependency Parsing

通常情况下,对于一个输入句子:\(S=w_{0} w_{1} \dots w_{n}\)。 我们用 \(w_{0}\) 来表示 ROOT,我们将这个句子转换成一个图 G。

依赖性解析通常分为训练与预测两步:

  1. 使用已经解析的注释库训练模型 M
  2. 得到模型 M之后,对于句子 S,通过模型解析出图 G。

基于转换的依赖性解析

该方法就是通过训练数据训练一个状态机,通过状态机转换对源语句进行解析。

基于贪心确定性过渡的解析

这个转换的系统本质也是一个状态机,但是不同的是,对于一个初始状态,会有多个终止状态。

对于每一个源语句 \(S=w_{0} w_{1} \dots w_{n}\) 每个状态可以表示成三部分 \(c=(\sigma, \beta, A)\) 。

  1. 第一部分 \(\sigma\) 用来存储来自 S 的 \(w_i\) ,使用栈存储
  2. \(\beta\) 表示一个来自 S 的缓冲
  3. A 表示 \(\left(w_{i}, r, w_{j}\right)\) 的集合,其中 \(w_{i}, w_{j}\) 来自 S,然后 r 表示 \(w_{i}, w_{j}\)之间的关系。

状态初始化:

  1. 初始状态是 \(C_0\) 可以表示为 \(\left[w_{0}\right]_{\sigma},\left[w_{1}, \ldots, w_{n}\right]_{\beta}, \varnothing\)。可以看到只有 \(w_0\) 在 \(\sigma\) 中,其它的 \(w_i\) 都在 \(\beta\) 中。还没有任何关系。
  2. 终止状态就是 \(\sigma,[ ]_{\beta}, A\) 形式。

状态转换的方法:

  1. 从缓存中移除一个单词兵放在 \(\sigma\) 栈顶,
  2. \(\mathrm{L} \mathrm{EFT}-\mathrm{A} \mathrm{RC}_{r}(l)\):将 \(\left(w_{j}, r, w_{i}\right)\) 添加至集合 A,\(w_{i}\) 是栈 \(\sigma\) 的第二个数据,\(w_{j}\) 是栈顶的单词,将 \(w_{i}\) 从栈中移除,这个 ARC 关系用 \(l\) 表示。
  3. \(\mathrm{RIGHT}-\mathrm{ARC}_{r}(l)\):将 \(\left(w_{i}, r, w_{j}\right)\) 添加到集合 A, \(w_{i}\)是栈的第二个单词,

神经依赖性解析

神经以来解析的效果要好于传统的方法。主要区别是神经依赖解析的特征表示。

我们描述的模型使用 arc 系统作为变换,我们的目的就是将原序列变成一个目的序列。就是完成解析树。这个过程可以看作是一个 encode 的过程。

Feature Selection:

第一步就是要进行特征的选择,对于神经网络的输入,我们需要定义一些特征,一般有以下这些:

\(S_{w o r d}\):S 中一些单词的向量表示

\(S_{\text {tag}}\):S 中一些单词的 Part-of-Speech (POS) 标签,POS 标签包含一个小的离散的集合:\(\mathcal{P}=\{N N, N N P, N N S, D T, J J, \dots\}\)

\(S_{l a b el}\):S 中一些单词的 arc-labels ,这个标签包含一个小的离散集合,描述依赖关系:\(\mathcal{L}=\{\) $amod, tmod $, \(n s u b j, c s u b j, d o b j\), \(\ldots\}\)

在神经网络中,我们还是首先会对这个输入处理,将这些编码从 one-hot 编码变成稠密的向量编码

对于单词的表示我们使用 \(e_{i}^{w} \in \mathbb{R}^{d}\)。使用的转换矩阵就是 \(E^{w} \in \mathbb{R}^{d \times N_{w}}\)。其中 \(N_w\) 表示字典的大小。\(e_{i}^{t}, e_{j}^{l} \in \mathbb{R}^{d}\) 分别表示第 \(i\) 个POS标签与第 \(j\) 个ARC 标签。对应的矩阵就是 \(E^{t} \in \mathbb{R}^{d \times N_{t}}\) and \(E^{l} \in \mathbb{R}^{d \times N_{l}}\)。其中 \(N_t\) 和 \(N_L\) 分别表示所有的 POS标签 与 ARC标签的个数。我们用 \(S^{w}, S^{t}, S^{l}\) 来表示 word, POS,ARC 的信息。

例如对于上面的这个图:

\(S_{tag}= \left\{l c_{1}\left(s_{2}\right) . t, s_{2} .t, r c_{1}\left(s_{2}\right) . t, s_{1} .t\right\}\)。然后我们将这些信息变成输入层的向量,比如对于单词来说,\(x^{w}=\left[e_{w_{1}}^{w} ; e_{w_{2}}^{w} ; \ldots e_{w_{n} w}^{w}\right]\)。其中 \(S_{word}=\left\{w_{1}, \ldots, w_{n_w}\right\}\),表示输入层的信息。同样的方式,我们可以获取到 \(x^t\) 与 \(x^l\)。然后我们经过一个隐含层,这个比较好理解:
\[
h=\left(W_{1}^{w} x^{w}+W_{1}^{t} x^{t}+W_{1}^{l} x^{l}+b_{1}\right)^{3}
\]
然后再经过一个 \(softmax\) 的输出层 \(p=\operatorname{softmax}\left(W_{2} h\right)\), 其中 \(W_2\) 是一个输出的矩阵,\(W_{2} \in \mathbb{R}|\mathcal{T}| \times d_{h}\)。

POS and label embeddings

就像单词的词典一样,我们对 POS 与 ARC 也有一个集合,其中 \(\mathcal{P}=\{\mathrm{NN}, \mathrm{NNP} ,\mathrm{NNS}, \mathrm{DT}, J J, \ldots \}\) 表示单词的一些性质, 例如 \(NN\) 表示单数名词。对于 \(\mathcal{L}=\{\)$ amod, tmod, nsubj, csubj, dobj$, \(\ldots\}\)表示单词间的关系。

Dependency Parsing的更多相关文章

  1. Dependency Parsing -13 chapter(Speech and Language Processing)

    https://web.stanford.edu/~jurafsky/slp3/13.pdf constituent-based 基于成分的phrasal constituents and phras ...

  2. 依存分析 Dependency Parsing

    依存分析 Dependency Parsing 句子成分依存分析主要分为两种:句法级别的和语义级别的 依存句法分析 syntactic dependency parsing 语义依存分词 semant ...

  3. 【神经网络】Dependency Parsing的两种解决方案

    一.Transition-based的依存解析方法 解析过程:首先设计一系列action, 其就是有方向带类型的边,接着从左向右依次解析句子中的每一个词,解析词的同时通过选择某一个action开始增量 ...

  4. Transaction Replication6:Transaction cleanup

    distribution中暂存的Transactions和Commands必须及时cleanup,否则,distribution size会一直增长,最终导致数据更新耗时增加,影响replicatio ...

  5. ZH奶酪:自然语言处理工具LTP语言云调用方法

    前言 LTP语言云平台 不支持离线调用: 支持分词.词性标注.命名实体识别.依存句法分析.语义角色标注: 不支持自定义词表,但是你可以先用其他支持自定义分词的工具(例如中科院的NLPIR)把文本进行分 ...

  6. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  7. RNN and LSTM saliency Predection Scene Label

    http://handong1587.github.io/deep_learning/2015/10/09/rnn-and-lstm.html  //RNN and LSTM http://hando ...

  8. 我和NLP的故事(转载)

    正值ACL录用结果发布,国内的老师和同学们又是一次大丰收,在这里再次恭喜所有论文被录用的老师和同学们!我人品爆发,也收获了自己硕士阶段的第二篇ACL论文.本来只是想单纯分享下自己中论文的喜悦,但没成想 ...

  9. awesome-nlp

    awesome-nlp  A curated list of resources dedicated to Natural Language Processing Maintainers - Keon ...

随机推荐

  1. DataPipeline CTO 陈肃:我们花了3年时间,重新定义数据集成

    目前,中国企业在大数据流通.交换.利用等方面仍处于起步阶段,但是企业应用数据集成市场却是庞大的.根据 Forrester 数据看来,2017 年全球数据应用集成市场纯软件规模是 320 亿美元,如果包 ...

  2. nrm 工具的使用

    一.什么是nrm? 这是官方的原话: 开发的npm registry 管理工具 nrm, 能够查看和切换当前使用的registry, 最近NPM经常 down 掉, 这个还是很有用的哈哈 顾名思义,就 ...

  3. php和mysql交互 面向对象

    不返回结果集 <?php //使用对象属性和方法来插入数据 header('Content-type:text/html;carset=utf8'); $con=new mysqli('loca ...

  4. 了解 npm install -S -D 的区别,看这篇就完事了

    一.npm install -S -D 的区别 npm install module_name -S 即 npm install module_name --save 写入dependencies n ...

  5. python_多线程

    1.多线程的实现与阻塞 import time import threading def fun_yellow(num): for i in range(1,num+1): print('正在拿第:' ...

  6. Linux操作系统的进程管理和作业管理

    Linux操作系统的进程管理和信号 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.lsof命令详解 1>.lsof概述 list open files查看当前系统文件的工 ...

  7. PAT甲级1002水题飘过

    #include<iostream> #include<string.h> using namespace std; ]; int main(){ int n1, n2; wh ...

  8. Kotlin字节码生成机制详尽分析

    通过注解修改Kotlin的class文件名: 对于Kotlin文件在编译之后生成的class文件名默认是有一定规则的,比如: 而其实这个生成字节码的文件名称是可以被改的,之前https://www.c ...

  9. Python开发AI应用-国际象棋应用

    AI 部分总述     AI在做出决策前经过三个不同的步骤.首先,他找到所有规则允许的棋步(通常在开局时会有20-30种,随后会降低到几种).其次,它生成一个棋步树用来随后决定最佳决策.虽然树的大小随 ...

  10. CentOS7.6安装docker最新版

    注意Centos7.4系统以下需要升级内核,否则会安装失败 yum install -y yum-utils device-mapper-persistent-data lvm2 yum-config ...