做完一个假设检验之后,如果结果具有统计显著性,那么还需要继续计算其效应量,如果结果不具有统计显著性,并且还需要继续进行决策的话,那么需要计算功效。

功效(power):正确拒绝原假设的概率,记作1-β。

假设检验的功效受以下三个因素影响:

  • 样本量 (n):其他条件保持不变,样本量越大,功效就越大。
  • 显著性水平 (α): 其他条件保持不变,显著性水平越低,功效就越小。
  • 两总体之间的差异:其他条件保持不变,总体参数的真实值和估计值之间的差异越大,功效就越大。也可以说,效应量(effect size)越大,功效就越大。

应用:根据显著性水平α,效应量和样本容量n,计算功效。

(可用G*Power或Statsmodels计算)

单样本t检验:statsmodels.stats.power.tt_solve_power(effect_size=Nonenobs=Nonealpha=Nonepower=Nonealternative='two-sided')

独立样本t检验:statsmodels.stats.power.tt_ind_solve_power(effect_size=Nonenobs1=Nonealpha=Nonepower=Noneratio=1.0alternative='two-sided')

卡方拟合优度检验:statsmodels.stats.power.GofChisquarePower.solve_power(effect_size=Nonenobs=Nonealpha=Nonepower=Nonen_bins=2)

F检验:statsmodels.stats.power.FTestPower.solve_power(effect_size=Nonedf_num=Nonedf_denom=Nonenobs=Nonealpha=Nonepower=Nonencc=1)

方差分析:statsmodels.stats.power.FTestAnovaPower.solve_power(effect_size=Nonenobs=Nonealpha=Nonepower=Nonek_groups=2)

效应量(effect size): 样本间差异或相关程度的量化指标。

效应量通常用三种方式来衡量:(1) 标准均差(standardized mean difference),(2) 几率(odd ratio),(3) 相关系数(correlation coefficient)。

这里说一下第一种:标准均差(standardized mean difference)。主要有以下几种指标:

Cohen’s : 两总体均值之间的标准差异。适用于两组样本的样本量和方差相似的情况。

计算公式:

其中:

Hedges’ g: 是cohen的方法的改进,适用于两组样本的样本量不同的情况。

计算公式:

其中:

Glass’s Δ (delta): 和cohen的方法类似,但是只除以控制组的标准差。适用于两组样本的方差不同的情况。

计算公式:

Cramer’s φ (Phi) or Cramer’s V: 用于测算类别型数据的效应量。当类别型变量包含2个类别时,使用Cramer’s phi,如果超过2个类别,那么使用Cramer’s V。

Cohen’s f2: 用于测算方差分析,多元回归之类的效应量。

计算公式:

应用:根据显著性水平α,功效和样本容量n,计算效应量。

(可用G*Power或Statsmodels计算)

单样本t检验:statsmodels.stats.power.tt_solve_power(effect_size=Nonenobs=Nonealpha=Nonepower=Nonealternative='two-sided')

独立样本t检验:statsmodels.stats.power.tt_ind_solve_power(effect_size=Nonenobs1=Nonealpha=Nonepower=Noneratio=1.0alternative='two-sided')

卡方拟合优度检验:statsmodels.stats.power.GofChisquarePower.solve_power(effect_size=Nonenobs=Nonealpha=Nonepower=Nonen_bins=2)

F方差齐性检验:statsmodels.stats.power.FTestPower.solve_power(effect_size=Nonedf_num=Nonedf_denom=Nonenobs=Nonealpha=Nonepower=Nonencc=1)

方差分析:statsmodels.stats.power.FTestAnovaPower.solve_power(effect_size=Nonenobs=Nonealpha=Nonepower=Nonek_groups=2)

以上两种应用都属于事后检验(post hoc)。除此之外,还有一个应用就是:根据显著性水平α,功效和效应量,计算样本容量n。这属于事前检验(prior)。具体请见:《如何确定假设检验的样本量?》

参考:

https://wenku.baidu.com/view/d78a82ecb9d528ea80c7792c.html

https://www.statisticssolutions.com/statistical-analyses-effect-size/

如何计算假设检验的功效(power)和效应量(effect size)?的更多相关文章

  1. 效应量Effect Size

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&am ...

  2. 去他的效应(what-the-hell effect)与自我放纵

    去他的 效应(what-the-hell effect)与自我放纵 为什么写这篇文章: 对于我来说,但我感到疲惫——"无意拿起"手机,对自己说"随便看看"——但 ...

  3. 查看数据库表的数据量和SIZE大小的脚本修正

    在使用桦仔的分享一个SQLSERVER脚本(计算数据库中各个表的数据量和每行记录所占用空间)的脚本时,遇到下面一些错误 这个是因为这些表的Schema是Maint,而不是默认的dbo,造成下面这段SQ ...

  4. 如何确定假设检验的样本量(sample size)?

    在<如何计算假设检验的功效(power)和效应量(effect size)?>一文中,我们讲述了如何根据显著性水平α,效应量和样本容量n,计算功效,以及如何根据显著性水平α,功效和样本容量 ...

  5. 二型错误和功效(Type II Errors and Test Power)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&am ...

  6. R in action读书笔记(13)第十章 功效分析

    功效分析 功效分析可以帮助在给定置信度的情况下,判断检测到给定效应值时所需的样本量.反过来,它也可以帮助你在给定置信度水平情况下,计算在某样本量内能检测到给定效应值的概率.如果概率低得难以接受,修改或 ...

  7. R笔记 单样本t检验 功效分析

    R data analysis examples 功效分析 power analysis for one-sample t-test单样本t检验 例1.一批电灯泡,标准寿命850小时,标准偏差50,4 ...

  8. Power BI与Tableau基于Google搜索上的比较

    在数据分析领域里,不少的数据爱好者都会关心什么数据分析产品最好用?最重要的是,很多的企业也特别希望员工能真正知道如何使用这些BI平台以确保公司的投资是值得.同类的文章,小悦也曾发布过,可参考最近< ...

  9. zookeeper分布式锁避免羊群效应(Herd Effect)

    本文(转自:http://jm-blog.aliapp.com/?p=2554)主要讲述在使用ZooKeeper进行分布式锁的实现过程中,如何有效的避免“羊群效应( herd effect)”的出现. ...

随机推荐

  1. 代码实现一个蛇形led走马灯

    什么叫走马灯? 走马灯又叫流水灯,灯不断的走动,像流水一样,动态显示. makecode图形化编程见:http://bbs.kittenbot.cn/forum.php?mod=viewthread& ...

  2. 使用 Spring Boot 构建 RESTful API

    1. 使用 Idea 创建 Spring Initializer 项目 在创建项目的对话框中添加 Web 和 Lombok,或者建立项目后在 pom.xml 中添加依赖: <dependency ...

  3. iviewUI 前端静态页面实现增删改查分页

    完整代码部分 (仅供参考哈): <template> <div> <label prop="name"> 姓名: </label> ...

  4. 将本地代码提交到github上

    首先点击new,创建一个github仓库. 设置仓库名称. 这时候你需要创建一个ssh密匙,桌面右键Git Bash Here.敲入命令.cd ~/.ssh/,如果提示"no such&qu ...

  5. SoapException: Timed out while processing web services request

    情形:动态调用WebService时,语句method.Invoke异常. 异常信息为调用目标发生异常,从异常信息并不能看出问题所在,需要查看InnerException,如标题所述:处理web请求超 ...

  6. Dr. Memory Quickstart Instructions in Chinese

    For similar insructions in English, please see RPI CSCI1200 instructions. 程序内存调试 程序内存错误有很多种,比如内存访问错误 ...

  7. c# 编码风格

    此内容为copy别人的,仅供自己参看.如有意见,麻烦通知我,谢谢 1. C# 代码风格要求 1.1注释 类型.属性.事件.方法.方法参数,根据需要添加注释. 如果类型.属性.事件.方法.方法参数的名称 ...

  8. JS基石之-----数组转换为树结构函数

    我们常常在做后台管理系统的时候 需要对数据进行组装成一个树装结构,这里特地将此方法进行封装: let data = [ { id: , text: }, { id: , text: }, { id: ...

  9. pip requirements.txt

    生成文件 pip freeze > requirements.txt 依赖库会导到于requirements.txt 比如:   image.png 从requirements.txt安装依赖库 ...

  10. D. Maxim and Array

    https://www.cnblogs.com/qscqesze/p/5925893.html  原博客 http://codeforces.com/group/1EzrFFyOc0/contest/ ...