相当与一个拓扑排序的模板题吧

蒟蒻的辛酸史

题目大意:给你一个有向无环图,让你求出1到n的最长路,如果没有路径,就输出-1

思路:一开始以为是一个很裸的拓扑排序

就不看题目,直接打了一遍拓扑排序

然后就得到了45分的成绩

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#define int long long int using namespace std; struct node
{
int u;
int v;
int w;
int next;
}data[];
int head[];
int cnt;
int n,m; inline void add(int u,int v,int w)
{
cnt++;
data[cnt].v=v;
data[cnt].w=w;
data[cnt].next=head[u];
head[u]=cnt;
} queue<int> q;
int fl[];
int value[]; signed main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
fl[v]++;
}
for(int i=;i<=n;i++)
{
if(fl[i]==)
{
q.push(i);
}
}
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=data[i].next)
{
if(value[data[i].v]<value[x]+data[i].w)
{
value[data[i].v]=value[x]+data[i].w;
}
fl[data[i].v]--;
if(!fl[data[i].v])
{
q.push(data[i].v);
}
}
}
int ans=;
for(int i=;i<=n;i++)
{
ans=max(ans,value[i]);
}
cout<<ans<<endl;
return ; }

45分代码

读题,加上了-1

得到了56分的好成绩

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#define int long long int using namespace std; struct node
{
int u;
int v;
int w;
int next;
}data[];
int head[];
int cnt;
int n,m; inline void add(int u,int v,int w)
{
cnt++;
data[cnt].v=v;
data[cnt].w=w;
data[cnt].next=head[u];
head[u]=cnt;
} queue<int> q;
int fl[];
int value[]; signed main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
fl[v]++;
}
for(int i=;i<=n;i++)
{
if(fl[i]==)
{
q.push(i);
}
}
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=data[i].next)
{
if(value[data[i].v]<value[x]+data[i].w)
{
value[data[i].v]=value[x]+data[i].w;
}
fl[data[i].v]--;
if(!fl[data[i].v])
{
q.push(data[i].v);
}
}
}
int ans=;
for(int i=;i<=n;i++)
{
ans=max(ans,value[i]);
}
if(ans==)
{
cout<<-<<endl;
}
else cout<<ans<<endl;
return ; }

56分代码

问了问lzt大佬

他说什么求的是1到n的最长路,而不是整张图中的最长路。。

修改,期望得分100

实际得分:67

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#define int long long int using namespace std; struct node
{
int u;
int v;
int w;
int next;
}data[];
int head[];
int cnt;
int n,m; inline void add(int u,int v,int w)
{
cnt++;
data[cnt].v=v;
data[cnt].w=w;
data[cnt].next=head[u];
head[u]=cnt;
} queue<int> q;
int fl[];
int value[]; signed main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
fl[v]++;
}
for(int i=;i<=n;i++)
{
if(fl[i]==)
{
q.push(i);
}
}
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=data[i].next)
{
if(value[data[i].v]<value[x]+data[i].w)
{
value[data[i].v]=value[x]+data[i].w;
}
fl[data[i].v]--;
if(fl[data[i].v]==)
{
q.push(data[i].v);
}
}
}
int ans=;
for(int i=;i<=n;i++)
{
ans=max(ans,value[i]);
}
if(ans==)
{
cout<<-<<endl;
}
else cout<<value[n]<<endl;
return ; }

67分代码

继续问lzt大佬,

说什么要先删边再求

也就是说,在整张图中,可能存在很多入度为零的点

此时我们就需要删边(因为求1到n的最长路,和那些不是一的点有什么关系呢??)

打个比方:如果你不删边,也不处理那些入度为零的点

就好比你想知道你谈的恋爱中哪场谈的最久,如果不处理,就成了你和你的所有前女友中,你们谈的所有恋爱中时间最久的那个。

也就是你求你谈的最长的一场恋爱,和你前女友们谈的最长的恋爱不是一个东西

好,那么我们先把除了1之外入度为零的点都放进去

跑一边拓扑排序,就达到了删边的目的

然后再把一放入队列中,进行第二遍拓扑排序

这时,到达n的最长路就是1到n的最长路

期望得分100

实际得分89..

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#define int long long int using namespace std; struct node
{
int u;
int v;
int w;
int next;
}data[];
int head[];
int cnt;
int n,m; inline void add(int u,int v,int w)
{
cnt++;
data[cnt].v=v;
data[cnt].w=w;
data[cnt].next=head[u];
head[u]=cnt;
} queue<int> q;
int fl[];
int value[]; signed main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
fl[v]++;
}
for(int i=;i<=n;i++)
{
if(fl[i]==)
{
q.push(i);
}
}
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=data[i].next)
{
fl[data[i].v]--;
if(fl[data[i].v]==)
{
q.push(data[i].v);
}
}
}
q.push();
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=data[i].next)
{
if(value[data[i].v]<value[x]+data[i].w)
{
value[data[i].v]=value[x]+data[i].w;
}
fl[data[i].v]--;
if(fl[data[i].v]==)
{
q.push(data[i].v);
}
}
}
int ans=;
for(int i=;i<=n;i++)
{
ans=max(ans,value[i]);
}
if(ans==)
{
cout<<-<<endl;
}
else cout<<value[n]<<endl;
return ; }

89分代码

错在哪里了呢??

再仔细读一遍代码

发现特判-1的地方写错了

ans==0是指整张图中的最长路是零

但是并不是说明了1到n之间有路

然后我们就特判一下,如果value[n]==0

那么我们就输出-1

这是因为,当ans>0时,只是说明了图中有点相连,并没有说明1到n之间有路可走

这时我们特判一下,当其是零的时候,就说明了没有路可走,那么我们就输出-1

期望得分100

实际得分100

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#define int long long int using namespace std; struct node
{
int u;
int v;
int w;
int next;
}data[];
int head[];
int cnt;
int n,m; inline void add(int u,int v,int w)
{
cnt++;
data[cnt].v=v;
data[cnt].w=w;
data[cnt].next=head[u];
head[u]=cnt;
} queue<int> q;
int fl[];
int value[]; signed main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
fl[v]++;
}
for(int i=;i<=n;i++)
{
if(fl[i]==)
{
q.push(i);
}
}
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=data[i].next)
{
fl[data[i].v]--;
if(fl[data[i].v]==)
{
q.push(data[i].v);
}
}
}
q.push();
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head[x];i;i=data[i].next)
{
if(value[data[i].v]<value[x]+data[i].w)
{
value[data[i].v]=value[x]+data[i].w;
}
fl[data[i].v]--;
if(fl[data[i].v]==)
{
q.push(data[i].v);
}
}
}
int ans=;
for(int i=;i<=n;i++)
{
ans=max(ans,value[i]);
}
if(ans==||value[n]==)
{
cout<<-<<endl;
}
else cout<<value[n]<<endl;
return ; }

100分代码

洛谷 P1807 最长路_NOI导刊2010提高(07)题解的更多相关文章

  1. 洛谷 P1807 最长路_NOI导刊2010提高(07) 题解

    P1807 最长路_NOI导刊2010提高(07) 题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算 ...

  2. 洛谷 P1807 最长路_NOI导刊2010提高(07)

    最长路 #include <iostream> #include <cstdio> #include <cstring> #include <queue> ...

  3. 洛谷P1807 最长路_NOI导刊2010提高(07)

    //拓扑排序求最长路 #include<bits/stdc++.h> #include<queue> using namespace std; const int INF=0x ...

  4. 图论--最长路--洛谷P1807 最长路_NOI导刊2010提高(07)

    题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径. 输入格式 ...

  5. luogu P1807 最长路_NOI导刊2010提高(07)

    题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径. 输入格式 ...

  6. P1807 最长路_NOI导刊2010提高(07)

    题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径. 输入输出 ...

  7. 【luogu P1807 最长路_NOI导刊2010提高(07)】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1807 求最大路?就是把权值取相反数跑最短路. #include <cstdio> #includ ...

  8. 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)

    P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...

  9. 洛谷P1771 方程的解_NOI导刊2010提高(01)

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

随机推荐

  1. MySQL主键与索引的区别和联系

    MySQL主键与索引的区别和联系   关系数据库依赖于主键,它是数据库物理模式的基石.主键在物理层面上只有两个用途: 惟一地标识一行. 作为一个可以被外键有效引用的对象. 索引是一种特殊的文件(Inn ...

  2. kubernetes使用阿里云cpfs持久存储

    目录 简介 安装cpfs客户端 kubernetes使用cfs作为持久存储 简介 cpfs的具体介绍可参考这里: https://help.aliyun.com/document_detail/111 ...

  3. Skywalking入门介绍,skywalking6.5.0 +mysql (windows) 搭建

    一. 介绍 1. 基本信息 SkyWalking 创建于2015年,提供分布式追踪功能.从5.x开始,项目进化为一个完成功能的Application Performance Monitoring系统. ...

  4. THUSC2019去不了记

    因为泥萌都去SC了,就我在学校里考水考模拟,所以这就变成了水考模拟游记了 Day1 早上本来要到教室早读,发现教室被由年级前\(100\)的非竞赛生的dalao给占据了,发现聪聪在里面,于是进去愉快的 ...

  5. 使用VMware 15 安装虚拟机和使用CentOS 8

    前言: 最近在学习Linux和.Net Core,学习一些跨平台的知识.首先我用的虚拟机软件是VMware-15.1.0,Linux系统是CentOS-8-x86_64-1905-dvd1. 一.安装 ...

  6. thinkphp 分页类 url 编码处理

    在做thinkphp分页的时候  thinkphp 中的分页 有一个小问题 就是 在有form 表单 搜索中文的时候,点击下一页的话 中文会被转换成编码. 如图: 最直接的方法就是 直接修改 thin ...

  7. ActiveMq C# 消息特性:延迟和定时消息投递

    ActiveMQ from version 5.4 has an optional persistent scheduler built into the ActiveMQ message broke ...

  8. C# 常用工具方法之DataTable(一)

    1.DataTable 转 泛型T的List /// <summary> /// 数据集DataTable转换成List集合 /// </summary> /// <ty ...

  9. 2-Consul简介

    Consul 是什么 Consul 是一个支持多数据中心分布式高可用的服务发现和配置共享的服务软件,由 HashiCorp 公司用 Go 语言开发, 基于 Mozilla Public License ...

  10. salesforce零基础学习(九十四)classic下pagelayout引入的vf page弹出内容更新此page layout

    我们在classic环境中,有时针对page layout不能实现的地方,可以引入 一个vf page去增强标准的 page layout 功能,有时可能要求这个 vf page的部分修改需要更新此 ...