题目描述

求有多少种长度为n的系列A,满足以下条件:

1~n这n个数在序列中各出现一次;若第i个数a[i]的值为i,则称i是稳定的。序列恰有m个数是稳定的。

输出序列个数对1e9+7取模的结果。

Solution

显然是从N个数中选m个数稳定,剩下的错排。答案即为:\(C^m_n * d[n - m]\)

\(C^m_n = \frac{n!}{m!(n - m)!} = n! * (m!)^{p - 2} * ((n - m)!)^{p - 2},p = 1e9 +7\)

\(d[n] = (n - 1) (d[n - 1] + d[n - 2])\)

#include <iostream>
#include <cstdio>
using namespace std;
inline long long read() {
long long x = 0; int f = 0; char c = getchar();
while (c < '0' || c > '9') f |= c == '-', c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
return f? -x : x;
} const int mod = 1e9 + 7;
const int maxn = 1000006;
int T, n, m;
long long d[maxn], c[maxn];
inline long long pow(long long a, long long k) {//快速幂
long long x = 1;
while (k) {
if (k & 1) x = x * a % mod;
a = a * a % mod; k >>= 1;
}
return x;
}
int main() {
T = read();
c[0] = 1;//预处理
for (int i = 1; i <= maxn; ++i) c[i] = c[i - 1] * i % mod;
d[1] = 0; d[0] = 1;
for (int i = 2; i <= maxn; ++i)
d[i] = (d[i - 1] + d[i - 2]) % mod * (i - 1) % mod;
while (T--) {
n = read(); m = read();
printf("%lld\n",d[n - m] % mod *
c[n] * pow(c[m], mod - 2) % mod * pow(c[n - m], mod - 2) % mod);
}
return 0;
}

【数论】[逆元,错排]P4071排列计数的更多相关文章

  1. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  2. [SDOI2016] 排列计数 (组合数学)

    [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰 ...

  3. [HDU 2049] 不容易系列之(4)——考新郎 (错排问题)

    不容易系列之(4)——考新郎 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2049 题目大意: 有N对新婚夫妇,其中所有的新娘站成一列,都盖上了红布. ...

  4. 【错排问题】【HDU2048】神、上帝以及老天爷

    神.上帝以及老天爷 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  5. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  6. 题解 P4071 【[SDOI2016]排列计数】 (费马小定理求组合数 + 错排问题)

    luogu题目传送门! luogu博客通道! 这题要用到错排,先理解一下什么是错排: 问题:有一个数集A,里面有n个元素 a[i].求,如果将其打乱,有多少种方法使得所有第原来的i个数a[i]不在原来 ...

  7. 组合数学+错排问题【p4071】[SDOI2016]排列计数

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  8. bzoj4517排列计数 错排+组合

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1491  Solved: 903[Submit][Statu ...

  9. 【BZOJ4517】[Sdoi2016]排列计数 组合数+错排

    [BZOJ4517][Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值 ...

随机推荐

  1. 完美解决SpringMVC中静态资源无法找到(No mapping found for HTTP request with URI)问题

    https://blog.csdn.net/kingmax54212008/article/details/79330308 今天遇到一个比较新奇的问题,但是也应该是使用spring MVC框架时由于 ...

  2. SQL Server SSIS中的变量使用表达式后,就无法更改其值了

    在SQL Server SSIS中,我们可以为变量定义初始值和表达式,其实SSIS的变量定义为表达式后我们就无法更改变量的值了,我们来做如下实验: 首先我们在SSIS包中定义一个String类型的变量 ...

  3. Mysql中的排序查询

    进阶3:排序查询 语法: select 查询列表 from 表 [where 筛选条件]order by 排序列表 [asc 升序 | desc降序] 例子 查询员工信息,要求工资从高到低 SELEC ...

  4. (原创)使用C#开发PLC上位机监控系统客户端应用程序

    PLC客户端监控系统的特点: 0.客户端系统软件可部署在 多个管理层的PC机上,或者需要部署在距离服务器较远区域的PC机上,通过网线连接到服务器端的交换机. 1应用范围: (1)所有客户端都只有监视功 ...

  5. python自动备份阿里云数据库binlog

    #coding:utf8from aliyunsdkcore import clientfrom aliyunsdkrds.request.v20140815 import DescribeBacku ...

  6. ajxa和axios的区别

    1.axios 原理还是属于 XMLHttpRequest, 因此需要实现一个ajax. 2.但还会需要一个promise对象来对结果进行处理.3.ajax实现var Ajax={ get: func ...

  7. HTML 结构标签(div+span)

    一.div 标签 div 就是 division 的缩写 分割, 分区的意思 常见的用途是文档布局. 二.span 标签 span, 跨度,跨距:范围 <span> 元素可用于为部分文本设 ...

  8. RPC相关知识

    为什么要进行系统拆分,为什么要用dubbo RPC的由来,基本架构,实现原理,整个调用过程经历了哪几步 Java动态代理及 RPC框架介绍 一篇文章了解RPC框架原理 dubbo详解及demo实例 d ...

  9. ThinkPHP5中如何实现模板完全静态化

    模板完全静态化,也就是通过模板完全生成纯静态的网页,相比动态页面和伪静态页面更安全更利于SEO访问更快.相比前二者各有利弊吧,现在稍微对这三种形式的优缺点对比一下,以及在ThinkPHP5项目中实现完 ...

  10. MySQL--mysqldmp命令参数set-gtid-purged

    在MySQL 5.7版本中使用mysqldump导出数据时,如果未显式指定set-gtid-purged参数,会报下面错误: Warning: A partial dump from a server ...