Spark源码执行逻辑分析【基于案例SparkPi】
一.案例SparkPi代码
package scala import org.apache.spark.sql.SparkSession import scala.math.random /** Computes an approximation to pi */
object SparkPi {
def main(args: Array[String]) {
val spark = SparkSession
.builder
.appName("Spark Pi")
.master("local[2]")
.getOrCreate()
val slices = if (args.length > 0) args(0).toInt else 2
val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow
val count = spark.sparkContext.parallelize(1 until n, slices).map { i =>
val x = random * 2 - 1
val y = random * 2 - 1
if (x*x + y*y <= 1) 1 else 0
}.reduce(_ + _)
println(s"Pi is roughly ${4.0 * count / (n - 1)}")
spark.stop()
}
}
二.执行结果
三.日志分析
1.在使用提交命令./run-example SparkPi 10执行案例SparkPi时,根据警告信息可知,因为是local【本地模式】,Spark会先检查本地IP。
2.其次,Spark会检测是否配置本地Hadoop及相关log4j等配置,配置会优先加载用户指定的Hadoop,无配置则使用自带的默认Hadoop.
3.基本信息检查完之后,开始启动Spark任务,向服务器注册该任务,启动可视化组件acls,开启服务sparkDriver
4.Spark开始注册任务调度器和资源管理器
5.创建本地临时目录,根据缓存模式缓存数据
6.SparkUI开启成功
7.开启Spark自带的netty web服务器
8.执行计算
9.执行成功,关闭SparkUI、任务调度器、资源管理器
四.源码分析
1.创建SparkSession程序执行入口
val spark = SparkSession.builder.appName("Spark Pi").master("local[2]").getOrCreate()
该程序首先调用对象SparkSession,指定应用的名称,运行方式【集群or单机】以及一些类如使用内存大小,核数等配置。在这个过程中会检测IP【仅限单机模式】和Hadoop配置。对应日志中的1、2、3。
源码如下:
object SparkSession extends Logging { /**
* Builder for [[SparkSession]].
*/
@InterfaceStability.Stable
class Builder extends Logging { private[this] val options = new scala.collection.mutable.HashMap[String, String] private[this] val extensions = new SparkSessionExtensions private[this] var userSuppliedContext: Option[SparkContext] = None private[spark] def sparkContext(sparkContext: SparkContext): Builder = synchronized {
userSuppliedContext = Option(sparkContext)
this
} /**
* Sets a name for the application, which will be shown in the Spark web UI.
* If no application name is set, a randomly generated name will be used.
*
* @since 2.0.0
*/
def appName(name: String): Builder = config("spark.app.name", name) /**
* Sets a config option. Options set using this method are automatically propagated to
* both `SparkConf` and SparkSession's own configuration.
*
* @since 2.0.0
*/
def config(key: String, value: String): Builder = synchronized {
options += key -> value
this
} /**
* Sets the Spark master URL to connect to, such as "local" to run locally, "local[4]" to
* run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster.
*
* @since 2.0.0
*/
def master(master: String): Builder = config("spark.master", master) /**
* Enables Hive support, including connectivity to a persistent Hive metastore, support for
* Hive serdes, and Hive user-defined functions.
*
* @since 2.0.0
*/
def enableHiveSupport(): Builder = synchronized {
if (hiveClassesArePresent) {
config(CATALOG_IMPLEMENTATION.key, "hive")
} else {
throw new IllegalArgumentException(
"Unable to instantiate SparkSession with Hive support because " +
"Hive classes are not found.")
}
} /**
* Gets an existing [[SparkSession]] or, if there is no existing one, creates a new
* one based on the options set in this builder.
*
* This method first checks whether there is a valid thread-local SparkSession,
* and if yes, return that one. It then checks whether there is a valid global
* default SparkSession, and if yes, return that one. If no valid global default
* SparkSession exists, the method creates a new SparkSession and assigns the
* newly created SparkSession as the global default.
*
* In case an existing SparkSession is returned, the config options specified in
* this builder will be applied to the existing SparkSession.
*
* @since 2.0.0
*/
def getOrCreate(): SparkSession = synchronized {
assertOnDriver()
// Get the session from current thread's active session.
var session = activeThreadSession.get()
if ((session ne null) && !session.sparkContext.isStopped) {
options.foreach { case (k, v) => session.sessionState.conf.setConfString(k, v) }
if (options.nonEmpty) {
logWarning("Using an existing SparkSession; some configuration may not take effect.")
}
return session
} // Global synchronization so we will only set the default session once.
SparkSession.synchronized {
// If the current thread does not have an active session, get it from the global session.
session = defaultSession.get()
if ((session ne null) && !session.sparkContext.isStopped) {
options.foreach { case (k, v) => session.sessionState.conf.setConfString(k, v) }
if (options.nonEmpty) {
logWarning("Using an existing SparkSession; some configuration may not take effect.")
}
return session
} // No active nor global default session. Create a new one.
val sparkContext = userSuppliedContext.getOrElse {
val sparkConf = new SparkConf()
options.foreach { case (k, v) => sparkConf.set(k, v) } // set a random app name if not given.
if (!sparkConf.contains("spark.app.name")) {
sparkConf.setAppName(java.util.UUID.randomUUID().toString)
} SparkContext.getOrCreate(sparkConf)
// Do not update `SparkConf` for existing `SparkContext`, as it's shared by all sessions.
} // Initialize extensions if the user has defined a configurator class.
val extensionConfOption = sparkContext.conf.get(StaticSQLConf.SPARK_SESSION_EXTENSIONS)
if (extensionConfOption.isDefined) {
val extensionConfClassName = extensionConfOption.get
try {
val extensionConfClass = Utils.classForName(extensionConfClassName)
val extensionConf = extensionConfClass.newInstance()
.asInstanceOf[SparkSessionExtensions => Unit]
extensionConf(extensions)
} catch {
// Ignore the error if we cannot find the class or when the class has the wrong type.
case e @ (_: ClassCastException |
_: ClassNotFoundException |
_: NoClassDefFoundError) =>
logWarning(s"Cannot use $extensionConfClassName to configure session extensions.", e)
}
} session = new SparkSession(sparkContext, None, None, extensions)
options.foreach { case (k, v) => session.initialSessionOptions.put(k, v) }
setDefaultSession(session)
setActiveSession(session) // Register a successfully instantiated context to the singleton. This should be at the
// end of the class definition so that the singleton is updated only if there is no
// exception in the construction of the instance.
sparkContext.addSparkListener(new SparkListener {
override def onApplicationEnd(applicationEnd: SparkListenerApplicationEnd): Unit = {
defaultSession.set(null)
}
})
} return session
}
}
}
2.程序计算逻辑执行
val count = spark.sparkContext.parallelize(1 until n, slices).map { i =>
val x = random * 2 - 1
val y = random * 2 - 1
if (x*x + y*y <= 1) 1 else 0
}.reduce(_ + _)
首先,程序调用SparkContext对象的parallelize函数,把数据转换为RDD并执行计算。对应日志中的步骤8。
源码如下:
/** Distribute a local Scala collection to form an RDD.
*
* @note Parallelize acts lazily. If `seq` is a mutable collection and is altered after the call
* to parallelize and before the first action on the RDD, the resultant RDD will reflect the
* modified collection. Pass a copy of the argument to avoid this.
* @note avoid using `parallelize(Seq())` to create an empty `RDD`. Consider `emptyRDD` for an
* RDD with no partitions, or `parallelize(Seq[T]())` for an RDD of `T` with empty partitions.
* @param seq Scala collection to distribute
* @param numSlices number of partitions to divide the collection into
* @return RDD representing distributed collection
*/
def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}
其中,比较重要的调用是withScope,该函数可以实现执行传入的函数体,以使在该主体中创建的所有RDD具有相同的作用域。
源码如下:
/**
* Execute the given body such that all RDDs created in this body will have the same scope.
* The name of the scope will be the first method name in the stack trace that is not the
* same as this method's.
*
* Note: Return statements are NOT allowed in body.
*/
private[spark] def withScope[T](
sc: SparkContext,
allowNesting: Boolean = false)(body: => T): T = {
val ourMethodName = "withScope"
val callerMethodName = Thread.currentThread.getStackTrace()
.dropWhile(_.getMethodName != ourMethodName)
.find(_.getMethodName != ourMethodName)
.map(_.getMethodName)
.getOrElse {
// Log a warning just in case, but this should almost certainly never happen
logWarning("No valid method name for this RDD operation scope!")
"N/A"
}
withScope[T](sc, callerMethodName, allowNesting, ignoreParent = false)(body)
} /**
* Execute the given body such that all RDDs created in this body will have the same scope.
*
* If nesting is allowed, any subsequent calls to this method in the given body will instantiate
* child scopes that are nested within our scope. Otherwise, these calls will take no effect.
*
* Additionally, the caller of this method may optionally ignore the configurations and scopes
* set by the higher level caller. In this case, this method will ignore the parent caller's
* intention to disallow nesting, and the new scope instantiated will not have a parent. This
* is useful for scoping physical operations in Spark SQL, for instance.
*
* Note: Return statements are NOT allowed in body.
*/
private[spark] def withScope[T](
sc: SparkContext,
name: String,
allowNesting: Boolean,
ignoreParent: Boolean)(body: => T): T = {
// Save the old scope to restore it later
val scopeKey = SparkContext.RDD_SCOPE_KEY
val noOverrideKey = SparkContext.RDD_SCOPE_NO_OVERRIDE_KEY
val oldScopeJson = sc.getLocalProperty(scopeKey)
val oldScope = Option(oldScopeJson).map(RDDOperationScope.fromJson)
val oldNoOverride = sc.getLocalProperty(noOverrideKey)
try {
if (ignoreParent) {
// Ignore all parent settings and scopes and start afresh with our own root scope
sc.setLocalProperty(scopeKey, new RDDOperationScope(name).toJson)
} else if (sc.getLocalProperty(noOverrideKey) == null) {
// Otherwise, set the scope only if the higher level caller allows us to do so
sc.setLocalProperty(scopeKey, new RDDOperationScope(name, oldScope).toJson)
}
// Optionally disallow the child body to override our scope
if (!allowNesting) {
sc.setLocalProperty(noOverrideKey, "true")
}
body
} finally {
// Remember to restore any state that was modified before exiting
sc.setLocalProperty(scopeKey, oldScopeJson)
sc.setLocalProperty(noOverrideKey, oldNoOverride)
}
}
Spark源码执行逻辑分析【基于案例SparkPi】的更多相关文章
- Spark源码剖析 - SparkContext的初始化(二)_创建执行环境SparkEnv
2. 创建执行环境SparkEnv SparkEnv是Spark的执行环境对象,其中包括众多与Executor执行相关的对象.由于在local模式下Driver会创建Executor,local-cl ...
- Spark 源码分析 -- task实际执行过程
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给Task ...
- spark 源码分析之二十一 -- Task的执行流程
引言 在上两篇文章 spark 源码分析之十九 -- DAG的生成和Stage的划分 和 spark 源码分析之二十 -- Stage的提交 中剖析了Spark的DAG的生成,Stage的划分以及St ...
- spark源码分析以及优化
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和O ...
- Apache Spark源码剖析
Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著 ISBN 978-7-121-25420- ...
- Spark源码的编译过程详细解读(各版本)
说在前面的话 重新试多几次.编译过程中会出现下载某个包的时间太久,这是由于连接网站的过程中会出现假死,按ctrl+c,重新运行编译命令. 如果出现缺少了某个文件的情况,则要先清理maven(使用命 ...
- 《Apache Spark源码剖析》
Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐1.本书全面.系统地介绍了 ...
- Spark源码的编译过程详细解读(各版本)(博主推荐)
不多说,直接上干货! 说在前面的话 重新试多几次.编译过程中会出现下载某个包的时间太久,这是由于连接网站的过程中会出现假死,按ctrl+c,重新运行编译命令. 如果出现缺少了某个文件的情况,则要 ...
- Spark 源码解析:TaskScheduler的任务提交和task最佳位置算法
上篇文章< Spark 源码解析 : DAGScheduler中的DAG划分与提交 >介绍了DAGScheduler的Stage划分算法. 本文继续分析Stage被封装成TaskSet, ...
随机推荐
- 为什么要使用token,token与session区别是什么
目录 一.session的状态保持及弊端 二.token认证机制 一.session的状态保持及弊端 当用户第一次通过浏览器使用用户名和密码访问服务器时,服务器会验证用户数据,验证成功后在服务器端写入 ...
- Git 克隆远程仓库到本地
Git 克隆远程仓库到本地 参考 $ git clone --help https://git-scm.com/book/zh/v2/Git-%E5%9F%BA%E7%A1%80-%E8%8E%B7% ...
- SQL必知必会02 过滤数据/条件查询
- JDOJ 1162 是否闰年
1162: 是否闰年 https://neooj.com:8082/oldoj/problem.php?id=1162 题目描述 输入一个年份year,求year是否是闰年,如果是闰年输出L,否则输出 ...
- MySQL实战45讲学习笔记:第二十讲
一.引子 在上一篇文章最后,我给你留了一个关于加锁规则的问题.今天,我们就从这个问题说起吧. 为了便于说明问题,这一篇文章,我们就先使用一个小一点儿的表.建表和初始化语句如下(为了便于本期的例子说明, ...
- java while 循环
public class Sample { public static void main(String[] args) { ; ) { System.out.print(num + " & ...
- Kubernetes 学习(九)Kubernetes 源码阅读之正式篇------核心组件之 Scheduler
0. 前言 继续上一篇博客阅读 Kubernetes 源码,参照<k8s 源码阅读>首先学习 Kubernetes 的一些核心组件,首先是 kube-scheduler 本文严重参考原文: ...
- Visual Studio 2019 for Mac 离线更新方法
当你打开Visual Studio 2019 for Mac检查更新时,如果下载更新包很慢,可以尝试如下操作: 打开Finder(访达),找到~/Library/Caches/VisualStudio ...
- Django文件上传【单个/多个图片上传】
准备工作 python:3.6.8 django:2.2.1 新建django项目 确定项目名称.使用的虚拟环境[当然这个也可以后期修改].app的名称 创建成功,选择在新的窗口中打开 图片上传 修改 ...
- centos7.x下环境搭建(一)--yum方式安装mysql5.7
前两天因为数据库被黑客攻击,导致数据被删除,数据库被损坏,系统重新安装了一下,所以环境也需要重新再搭一遍,包括mysql.nodejs.git.nginx和redis的安装.由于之前安装的mysql安 ...