开发|pandas模块

整了一篇关于pandas模块的使用文章,方便检查自己的学习质量。自从使用了pandas之后,真的是被它的功能所震撼~~~

前言

目前所有的文章思想格式都是:知识+情感。
知识:对于所有的知识点的描述。力求不含任何的自我感情色彩。
情感:用我自己的方式,解读知识点。力求通俗易懂,完美透析知识。

正文

pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的。**Python Data Analysis Library **( pandas )是为了解决数据分析任务而创建的。

所以,在使用pandas的时候,需要适当的回顾一下关于numpy的使用,多回顾是好事,防止遗忘。

pandas 安装

一般使用Python的工具都是使用pip进行安装,只是因为使用的是Python3 ,所以使用的是pip3 进行安装,其实使用pip也不会报错~~

安装方式: pip3 install pandas

引入方式: import pandas as pd

注意: 如果安装了anaconda就不需要了pip了~

Series

1.Series是什么?

Series是一种类似于一位数组的对象,由一组数据和一组与之相关的数据标签(索引)组成

2、Series 怎么创建?

注意:前面一列表示的是索引(可以自己进行指定),后面一列是自己的数据值。

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: pd.Series([1, 2, 3, 4])
Out[3]:
0 1
1 2
2 3
3 4
dtype: int64 In [4]: pd.Series([11, 12, 13, 14], index=['a', 'b', 'c', 'd'])
Out[4]:
a 11
b 12
c 13
d 14
dtype: int64 In [5]: pd.Series(np.arange(10))
Out[5]:
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
dtype: int32

3.获取值数组和索引数组:values属性和index属性

注意:所谓的指定下标,只不过是显示的,底层还是基于原来的数字索引下标。

对于数组的所以,依然可以使用列表的方式。

In [7]: s = pd.Series([11, 12, 13, 14], index=['a', 'b', 'c', 'd'])

In [8]: s
Out[8]:
a 11
b 12
c 13
d 14
dtype: int64 In [9]: s[0]
Out[9]: 11 In [10]: s[-1]
Out[10]: 14

4.Series的使用特性

1)Series比较像列表(数组)和字典的结合体。

2)具有如下特性:

Series支持array的特性(下标):
从ndarray创建Series:Series(arr)
与标量运算:sr*2
两个Series运算:sr1+sr2
索引:sr[0], sr[[1,2,4]]
切片:sr[0:2]
通用函数:np.abs(sr)
布尔值过滤:sr[sr>0]
Series支持字典的特性(标签):
从字典创建Series:Series(dic),
in运算:’a’ in sr
键索引:sr['a'], sr[['a', 'b', ‘d']]

3)示例代码如下:

In [11]: a
Out[11]:
a 4
b 5
c 6
d 7
dtype: int64 In [12]: a[a>5]
Out[12]:
c 6
d 7
dtype: int64

5.Series 的索引选择问题?

注意:由于自己可以指定数据的索引标签,所以在进行取出数据的时候,使用自己指定的索引标签呢?还是使用原生的0,1,2...索引??

解决:如果索引是整数类型,则根进据整数行下标获取值时总是面向标签的。

解决方法:loc属性(将索引解释为标签)和iloc属性(将索引解释为下标)

代码实现:

In [20]: s = pd.Series([11, 12, 13, 14], index=['a', 'b', 'c', 'd'])

In [21]: s
Out[21]:
a 11
b 12
c 13
d 14
dtype: int64 In [22]: s.loc['a']
Out[22]: 11 In [23]: s.iloc[0]
Out[23]: 11

6.Series的数据根据索引匹配

1)注意:pandas在进行两个Series对象的运算时,会按索引标签进行对齐,然后计算。

如果两个Series对象的索引不完全相同,则结果的索引是两个操作数索引的并集。如果只有一个对象在某索引下有值,则结果中该索引的值为NaN(缺失值)

In [25]: sr1 = pd.Series([12,23,34], index=['c','a','d'])
...: sr2 = pd.Series([11,20,10], index=['d','c','a'])
...: sr1+sr2
Out[25]:
a 33
c 32
d 45
dtype: int64 In [26]: sr1 = pd.Series([12,23,34], index=['c','a','d'])
...: sr2 = pd.Series([11,20,10], index=['b','c','a'])
...: sr1+sr2
Out[26]:
a 33.0
b NaN
c 32.0
d NaN
dtype: float64

2)当不希望因为没有对应的标签出现NaN的时候,可以使用add()方法,fill_valus属性进行操作

In [28]: sr1 = pd.Series([12,23,34], index=['c','a','d'])
...: sr2 = pd.Series([11,20,10], index=['b','c','a']) In [29]: sr1.add(sr2, fill_value=0)
...:
Out[29]:
a 33.0
b 11.0
c 32.0
d 34.0
dtype: float64

7.缺失数据处理

缺失数据:使用NaN(Not a Number)来表示缺失数据。其值等于np.nan。内置的None值也会被当做NaN处理。

处理缺失数据的相关方法:

    dropna()	过滤掉值为NaN的行
fillna() 填充缺失数据
isnull() 返回布尔数组,缺失值对应为True
notnull() 返回布尔数组,缺失值对应为False

过滤缺失数据:sr.dropna() 或 sr[data.notnull()]

填充缺失数据:fillna(0)

DatFrame

1.DataFrame是什么?

DataFrame是一个表格型的数据结构,含有一组有序的列。DataFrame可以被看做是由Series组成的字典,并且共用一个索引。并且可以看成是二维数据类型。

2.创建二维数组

注意:可以使用类似于字典的方式进行二维数组的创建。

In [30]: animals = pd.DataFrame({'kind': ['cat', 'dog', 'cat', 'dog'],
...: 'height': [9.1, 6.0, 9.5, 34.0],
...: 'weight': [7.9, 7.5, 9.9, 198.0]}) In [31]: animals
Out[31]:
kind height weight
0 cat 9.1 7.9
1 dog 6.0 7.5
2 cat 9.5 9.9
3 dog 34.0 198.0

注意:创建的过程中,标签索引不存在的时候,可以使用NaN进行代替,并且二维数组是以列为一个以为数组,所以每一列的数据类型会保持一致。回忆numpy中的保证数据类型一致的情景。

NaN被认为是浮点数形式。

In [32]: pd.DataFrame({'one':pd.Series([1,2,3],index=['a','b','c']),
...: 'two':pd.Series([1,2,3,4],index=['b','a','c','d'])})
Out[32]:
one two
a 1.0 2
b 2.0 1
c 3.0 3
d NaN 4

3.csv文件的读写

注意: csv文件,类似于数组,行区分是逗号,列区分是换行。

出数据:

df.read_csv('filename.csv')

入数据:

df.to_csv()

4.DataFrame-常用属性

注意:Series里面是将一列看成一起的,所以数据类型也会是一样的。

index	获取索引
T 转置
columns 获取列索引
values 获取值数组
describe() 获取快速统计

5.DataFrame-索引和切片

1)DataFrame是一个二维数据类型,所以有行索引和列索引

2)DataFrame同样可以通过标签和位置两种方法进行索引和切片

** ........ loc属性和iloc属性**

使用方法:逗号隔开,前面是行索引,后面是列索引

行/列索引部分可以是常规索引、切片、布尔值索引、花式索引任意搭配

6.DataFrame-数据对齐与缺失数据

1)DataFrame对象在运算时,同样会进行数据对齐,其行索引和列索引分别对齐。如果指定标签就按照标签进行对其,默认按照数字对其。

2)DataFrame处理缺失数据的相关方法:

dropna(axis=0,where='any',…)
fillna()
isnull()
notnull()

pandas常用方法

注意:NumPy的通用函数同样适用于pandas

mean(axis=0,skipna=False)				对列(行)求平均值
sum(axis=1) 对列(行)求和
sort_index(axis, …, ascending) 对列(行)索引排序
sort_values(by, axis, ascending) 按某一列(行)的值排序,可以按列,升序与降序(NaN表示缺失值,不进行排序)
apply(func, axis=0) 将自定义函数应用在各行或者各列上,func可返回标量或者Series
applymap(func) 将函数应用在DataFrame各个元素上
map(func) 将函数应用在Series各个元素上
axis表示在二维数组中表示行与列,当等于1的时候就表示等于行,0表示等于列
describe(),快速看到每一列的信息,平均值,标准差,方差,最大值,最小值….

例子:

In [37]: s = pd.DataFrame({'a': np.arange(10), 'b': np.arange(10, 20)})

In [38]: s
Out[38]:
a b
0 0 10
1 1 11
2 2 12
3 3 13
4 4 14
5 5 15
6 6 16
7 7 17
8 8 18
9 9 19 In [39]: s.describe()
Out[39]:
a b
count 10.00000 10.00000
mean 4.50000 14.50000
std 3.02765 3.02765
min 0.00000 10.00000
25% 2.25000 12.25000
50% 4.50000 14.50000
75% 6.75000 16.75000
max 9.00000 19.00000

pandas时间对象

1.时间序列类型:

时间戳:特定时刻
固定时期:如2017年7月
时间间隔:起始时间-结束时间

2.Python标准库处理时间对象:datetime

灵活处理时间对象:dateutil
dateutil.parser.parse()
成组, 批量转换时间对象:pandas
pd.to_datetime()

3.产生时间对象数组:date_range

start			开始时间
end 结束时间
periods 时间长度
freq 时间频率,默认为'D',可选H(our),W(eek),B(usiness),S(emi-)M(onth),(min)T(es), S(econd), A(year),…
In [40]: pd.date_range?
Signature:
pd.date_range(
start=None,
end=None,
periods=None,
freq=None,
tz=None,
normalize=False,
name=None,
closed=None,
**kwargs,
)

4.pandas 的时间序列

1)时间序列就是以时间对象为索引的Series或DataFrame。

datetime对象作为索引时是存储在DatetimeIndex对象中的。

2)时间序列特殊功能:

传入“年”或“年月”作为切片方式
传入日期范围作为切片方式
丰富的函数支持:resample(), strftime(), ……

pandas文件处理

1)数据文件常用格式:csv(以某间隔符分割数据)

2)pandas读取文件:从文件名、URL、文件对象中加载数据

read_csv 默认分隔符为逗号

read_table 默认分隔符为制表符

科普:excel文件是xml文件打包的文件,可以使用重命名为zip之后进行解压查看相关数据。

3.文件处理参数读参数

read_csv、read_table函数主要参数:
sep 指定分隔符,可用正则表达式如'\s+'
header=None 指定文件无列名
name 指定列名
index_col 指定某列作为索引
skip_row 指定跳过某些行
na_values 指定某些字符串表示缺失值
parse_dates 指定某些列是否被解析为日期,类型为布尔值或列表

4.文件处理写参数

写入到csv文件:to_csv函数
写入文件函数的主要参数:
sep 指定文件分隔符
na_rep 指定缺失值转换的字符串,默认为空字符串
header=False 不输出列名一行
index=False 不输出行索引一列
cols 指定输出的列,传入列表

5.支持数据格式

pandas支持的其他文件类型:

json, XML, HTML, 数据库,pickle,excel...

结束语

在使用pandas处理数据的时候,对比list(列表)的最大的改变是在内存数据的存储上进行了更改。开始着重凸显出以标签与索引为向导的数据,让处理数据更加快捷,可视化效果更好~~

最后补充一下,多看源码,pandas库的函数特别多,在处理相应问题的时候,从源码入手,里面会有很多例子~~

参考资料1:https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.25.0.html

参考资料2:https://pandas.pydata.org/

开发技术--pandas模块的更多相关文章

  1. 开发技术--Numpy模块

    开发|Numpy模块 Numpy模块是数据分析基础包,所以还是很重要的,耐心去体会Numpy这个工具可以做什么,我将从源码与 地产呢个实现方式说起,祝大家阅读愉快! Numpy模块提供了两个重要对象: ...

  2. .NET Web开发技术简单整理

    在最初学习一些编程语言.一些编程技术的时候,做的更多的是如何使用该技术,如何更好的使用该技术解决问题,而没有去关注它的相关性.关注它的理论支持,这种学习技术的方式是短平快.其实工作中有时候也是这样,公 ...

  3. 使用SilverLight开发区域地图分析模块

    本人最近接收开发一个代码模块,功能主要是在页面上显示安徽省市地图,并且在鼠标移动到地图某市区域时,显示当前区域的各类信息等,一开始准备用百度地图,高德地图等地图工具进行开发,最后发现都不适合进行此类开 ...

  4. 关于APP,原生和H5开发技术的争论

    App的开发技术,目前流行的两种方式,原生和Html5.原生分了安卓平台和ios平台(还有小众的黑莓.死去的塞班就不说了),H5就是Html5. 目前争论不休的问题,在早先前争论CS,BS架构的软件系 ...

  5. 转载:.NET Web开发技术简单整理

    在最初学习一些编程语言.一些编程技术的时候,做的更多的是如何使用该技术,如何更好的使用该技术解决问题,而没有去关注它的相关性.关注它的理论支持,这种学习技术的方式是短平快.其实工作中有时候也是这样,公 ...

  6. WPF开发技术介绍

    本月做了一个小讲座,主要是WPF的开发技术介绍,由于是上班时间,去听的人不多,但对于自己来说至少是又巩固了Winform的知识,抽时间写一篇文章,在此分享给大家,有什么宝贵建议大家也可以提给我,谢谢. ...

  7. Python开发技术详解(视频+源码+文档)

    Python, 是一种面向对象.直译式计算机程序设计语言.Python语法简捷而清晰,具有丰富和强大的类库.它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结 ...

  8. 基于Asterisk的VoIP开发指南——Asterisk 模块编写指南(1)

    原文:基于Asterisk的VoIP开发指南--Asterisk 模块编写指南(1) 1 开源项目概述 Asterisk是一个开源的软件包,通常运行在Linux操作系统平台上.Asterisk可以用三 ...

  9. JavaWeb开发技术基础概念回顾篇

    JavaWeb开发技术基础概念回顾篇 第一章 动态网页开发技术概述 1.JSP技术:JSP是Java Server Page的缩写,指的是基于Java服务器端动态网页. 2.JSP的运行原理:当用户第 ...

随机推荐

  1. 4-剑指offer: 把数组排成最小的数

    题目描述 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个.例如输入数组{3,32,321},则打印出这三个数字能排成的最小数字为321323. 代码: cl ...

  2. JS中key-value存取

    获取Key 在代码中,遇到需要单独提取对象的key值时可使用 Object.keys(object) object是你需要操作的对象Object.keys()会返回一个存储对象中所有key值的数组获取 ...

  3. 使用angularJS接收json数据并进行数据的显示

    1.引入JS <script type="text/javascript" src="../plugins/angularjs/angular.min.js&quo ...

  4. 【JavaWeb】SpringBoot架构

    0.文件夹结构 1.接口统一返回值 2.全局异常处理 3.数据库访问配置[OK] 4.前端模版页[OK] 5.Swagger接口[OK] 6.公共插件[OK] ---lombok ---google ...

  5. halcon笔记1

    * 获得二值图 Image_binread_image(Image, 'C:/Alex/halcon/test.bmp') // 读图 threshold (Image, Regions, , ) / ...

  6. DLinNLP

    2015蒙特利尔深度学习暑期学校之自然语言处理篇 用户1737318 8月3日至8月12日在蒙特利尔举办的深度学习署期学校中,来自不同领域的深度学习顶尖学者 (Yoshua Bengio, Leon ...

  7. Jmeter压力并发测试

    一.http://jmeter.apache.org/ 二.点击Download Releases选择版本下载 三.下载解压: 将解压后的文档存盘-下载logkit-2.0.jar(汉化包)放到jme ...

  8. 为什么说要搞定微服务架构,先搞定RPC框架

    今天开始聊一些微服务的实践,第一块,RPC框架的原理及实践,为什么说要搞定微服务架构,先搞定RPC框架呢? 一.需求缘起 服务化的一个好处就是,不限定服务的提供方使用什么技术选型,能够实现大公司跨团队 ...

  9. cf1208G Polygons 欧拉函数

    链接 cf 给你两个正整数\(n\)和\(k\),询问在一个圆上你最少需要几个点构才能造出\(k\)个边数小于等于\(n\)的正多边形 思路 深受迫害,所以写的详细一点,不会请留言. 性质1 考虑加进 ...

  10. Python程序设计例题

    例一:蒙特卡罗方法求解 π 值 from random import random from math import sqrt from time import clock DARTS=1000 hi ...